Swapan Banerjee, Annika Flint, Madeleine B. Brosseau, Kelly Weedmark, Bojan Shutinoski
{"title":"Evaluation of MALDI-TOF for identification of Vibrio cholerae and Vibrio parahaemolyticus from growth on agar media","authors":"Swapan Banerjee, Annika Flint, Madeleine B. Brosseau, Kelly Weedmark, Bojan Shutinoski","doi":"10.1007/s00253-024-13385-y","DOIUrl":null,"url":null,"abstract":"<p>Two methods were compared for their ability to accurately identify <i>Vibrio</i> species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry–based identification method was evaluated for its ability to accurately identify isolates of <i>Vibrio cholerae</i> and <i>Vibrio parahaemolyticus</i>. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS). The MALDI-TOF MS system had excellent performance for identification of <i>V. cholerae</i> and <i>V. parahaemolyticus</i> isolates grown on a non-selective solid agar media. Unlike the biochemical characterization performed by API20E. In this study, 161 isolates (<i>V. cholerae, n</i> = 33; <i>V. parahaemolyticus, n</i> = 102; <i>V.</i> spp., <i>n</i> = 23; other enteropathogens, <i>Salmonella</i> and <i>E. coli</i>, <i>n</i> = 3) were used to assess accuracy. The MALDI-TOF MS system was able to accurately identify 100% (33/33) of the <i>V. cholerae</i> isolates and 99.9% (101/102) of <i>V. parahaemolyticus</i> isolates, with 100% for both sensitivity and specificity for <i>V. cholerae</i> and 99% sensitivity and 98% specificity for <i>V. parahaemolyticus</i>. Thus, mass spectrometry for bacterial identification is comparable to the WGS. Furthermore, in comparison to a biochemical characterization, the use of MALDI-TOF MS system shortens the analysis time from over 72 h to less than 24 h.</p><p><i>• V. cholerae and V. parahaemolyticus were successfully ID-ed by MALDI-TOF</i></p><p><i>• MALDI-TOF sensitivity and specificity parallels the WGS method of identification</i></p><p><i>• MALDI-TOF is several days faster than the battery of culture-dependent methods</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13385-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13385-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two methods were compared for their ability to accurately identify Vibrio species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry–based identification method was evaluated for its ability to accurately identify isolates of Vibrio cholerae and Vibrio parahaemolyticus. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS). The MALDI-TOF MS system had excellent performance for identification of V. cholerae and V. parahaemolyticus isolates grown on a non-selective solid agar media. Unlike the biochemical characterization performed by API20E. In this study, 161 isolates (V. cholerae, n = 33; V. parahaemolyticus, n = 102; V. spp., n = 23; other enteropathogens, Salmonella and E. coli, n = 3) were used to assess accuracy. The MALDI-TOF MS system was able to accurately identify 100% (33/33) of the V. cholerae isolates and 99.9% (101/102) of V. parahaemolyticus isolates, with 100% for both sensitivity and specificity for V. cholerae and 99% sensitivity and 98% specificity for V. parahaemolyticus. Thus, mass spectrometry for bacterial identification is comparable to the WGS. Furthermore, in comparison to a biochemical characterization, the use of MALDI-TOF MS system shortens the analysis time from over 72 h to less than 24 h.
• V. cholerae and V. parahaemolyticus were successfully ID-ed by MALDI-TOF
• MALDI-TOF sensitivity and specificity parallels the WGS method of identification
• MALDI-TOF is several days faster than the battery of culture-dependent methods
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.