A. A. Khokhryakov, M. A. Samoilova, V. V. Ryabov, L. B. Vedmid’
{"title":"Effective Viscosity and Glass Transition Temperature of Cs2O–B2O3 Melts","authors":"A. A. Khokhryakov, M. A. Samoilova, V. V. Ryabov, L. B. Vedmid’","doi":"10.1134/S0036029524701350","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The effective viscosity (viscoelasticity) of cesium–borate melts has been measured in the temperature interval 900–1600 K at Cs<sub>2</sub>O concentration <i>x</i> varying from 0 to 16 mol % by the method of vibrational viscometry. It has been shown than vibration causes a non-Newtonian flow of melts. This means that the activation energy of viscous flow is related not only to the configuration activation energy (the switching energy of oxygen bridge bonds) but also to the elastic energy of structural units in the melt. Using the parameters of Newtonian and non-Newtonian flows, shear viscosity η', elasticity modulus <i>G</i> ', and storage viscosity η\" have been calculated. It has been found that in the case of high shear rates, cesium–borate melts may be considered as fluids with viscous and elastic properties. Glass transition temperature <i>T</i><sub>g</sub> has been determined by the differential scanning calorimetry method, and its dependence on cesium oxide concentration has been explained.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":"2024 1","pages":"52 - 58"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029524701350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract—The effective viscosity (viscoelasticity) of cesium–borate melts has been measured in the temperature interval 900–1600 K at Cs2O concentration x varying from 0 to 16 mol % by the method of vibrational viscometry. It has been shown than vibration causes a non-Newtonian flow of melts. This means that the activation energy of viscous flow is related not only to the configuration activation energy (the switching energy of oxygen bridge bonds) but also to the elastic energy of structural units in the melt. Using the parameters of Newtonian and non-Newtonian flows, shear viscosity η', elasticity modulus G ', and storage viscosity η" have been calculated. It has been found that in the case of high shear rates, cesium–borate melts may be considered as fluids with viscous and elastic properties. Glass transition temperature Tg has been determined by the differential scanning calorimetry method, and its dependence on cesium oxide concentration has been explained.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.