Gauresh Raj Jassal, Maxwell Song, Bryan E. Schmidt
{"title":"Particle shadow velocimetry and its potential applications, limitations and advantages vis-à-vis particle image velocimetry","authors":"Gauresh Raj Jassal, Maxwell Song, Bryan E. Schmidt","doi":"10.1007/s00348-024-03934-6","DOIUrl":null,"url":null,"abstract":"<div><p>Particle image velocimetry (PIV) is an established velocimetry technique in experimental fluid mechanics that involves determining a fluid flow velocity field from the motion of tracer particles illuminated by a laser sheet. The necessity of laser illumination poses challenges in certain applications and is a potential entry barrier due to its high cost and safety considerations. A laser-free alternative to PIV is particle shadow velocimetry (PSV), which uses images of the shadows cast by the particles on the camera sensor under back-illumination, instead of the Mie scattering signal produced by laser illumination. This study aims to compare various aspects of PSV such as depth of field, seeding density, type of illumination required, particle size, image filtering, cost-effectiveness and limitations with those of PIV. PSV and PIV measurements are taken in the wake of a flow past a cylinder and in a boundary layer developing over a flat plate. It is found that PSV is capable of achieving equivalent accuracy to PIV and is a viable alternative to PIV in certain applications where light sheet illumination creates experimental challenges.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03934-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Particle image velocimetry (PIV) is an established velocimetry technique in experimental fluid mechanics that involves determining a fluid flow velocity field from the motion of tracer particles illuminated by a laser sheet. The necessity of laser illumination poses challenges in certain applications and is a potential entry barrier due to its high cost and safety considerations. A laser-free alternative to PIV is particle shadow velocimetry (PSV), which uses images of the shadows cast by the particles on the camera sensor under back-illumination, instead of the Mie scattering signal produced by laser illumination. This study aims to compare various aspects of PSV such as depth of field, seeding density, type of illumination required, particle size, image filtering, cost-effectiveness and limitations with those of PIV. PSV and PIV measurements are taken in the wake of a flow past a cylinder and in a boundary layer developing over a flat plate. It is found that PSV is capable of achieving equivalent accuracy to PIV and is a viable alternative to PIV in certain applications where light sheet illumination creates experimental challenges.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.