Dugasa Belay Zeleke, Arseniy M. Sachkov, Oleg Y. Malkov, Seblu Humne Negu, Solomon Belay Tessema, Alyona D. Grinenko
{"title":"Resolved spectroscopic binaries: orbital elements and parallaxes","authors":"Dugasa Belay Zeleke, Arseniy M. Sachkov, Oleg Y. Malkov, Seblu Humne Negu, Solomon Belay Tessema, Alyona D. Grinenko","doi":"10.1007/s10509-024-04393-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigated the orbital elements and stellar parameters of resolved spectroscopic binary systems. It is shown that resolved spectroscopic binary stars are an important (and sometimes indispensable) source of information on the distances to stars. We have compiled a comprehensive catalog of resolved spectroscopic binaries and conducted statistical analysis on 173 stars from this catalog. As a result, we have constructed distributions for orbital elements and component masses. In particular, it is shown that orbital parallaxes are preferable to trigonometric parallaxes in a certain semi-major axis (<span>\\(a >\\)</span> 26-27 AU) and brightness (V > 9-10 mag) range. Also, trigonometric parallaxes of distant (<span>\\(d > \\approx \\)</span>1 kpc) binaries seem to be overestimating the distance. We have shown also that the resolved spectroscopic binaries confirm the Zahn’s circularization theory.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04393-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigated the orbital elements and stellar parameters of resolved spectroscopic binary systems. It is shown that resolved spectroscopic binary stars are an important (and sometimes indispensable) source of information on the distances to stars. We have compiled a comprehensive catalog of resolved spectroscopic binaries and conducted statistical analysis on 173 stars from this catalog. As a result, we have constructed distributions for orbital elements and component masses. In particular, it is shown that orbital parallaxes are preferable to trigonometric parallaxes in a certain semi-major axis (\(a >\) 26-27 AU) and brightness (V > 9-10 mag) range. Also, trigonometric parallaxes of distant (\(d > \approx \)1 kpc) binaries seem to be overestimating the distance. We have shown also that the resolved spectroscopic binaries confirm the Zahn’s circularization theory.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.