{"title":"Material modeling and microstructure evolution of LZ50 railway axle steel during bar flexible skew rolling","authors":"Longfei Lin, Feng Yu, Xiaohui Zhang, Moliar Oleksandr","doi":"10.1007/s43452-024-01079-1","DOIUrl":null,"url":null,"abstract":"<div><p>Since the railway axles generally need to bear heavy dynamic loads of impaction, bending, torsion, and vibration under high speed and heavy transporting, it is of great significance to control the microstructure of the railway axle steel. In this study, the material behaviors including hot deformation and microstructure evolution of LZ50 steel are tested. According to the stress–strain and grain size of basic experiments, a mechanism-based constitutive model considering internal state variables of dislocation density, recrystallization fraction, and average grain size (AGS) is established to theoretically describe the macroscopical deformation and microstructure evolution of LZ50 steel. Subsequently, a finite element (FE) model of flexible skew rolling (FSR) bar is further developed via compiling the mechanism-based constitutive model into FE software by user-defined subroutine and its reliability has been verified by comparing the size of geometry and grain of experimental and FE results. The FE results show that the microstructure evolution mechanism of FSR rolling LZ50 steel is that hot plastic deformation leads to dislocation multiplication resulting in dynamic recrystallization and ultimately grain refinement. As the bar is formed by continuous FSR rolling, its microstructure is relatively uniform with the grain size of the outer layer slightly smaller than that of the inner layer because of the more severe deformation of the outer metal. The influence of FSR parameters on grain size reveals that the microstructure of the rolled bar is generally uniform in various situations and the parameter conditions of larger area reduction, longer sizing length, larger forming angle, and smaller skewing angle can improve the microstructure and properties of the FSR rolled bar by grain refinement.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01079-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Since the railway axles generally need to bear heavy dynamic loads of impaction, bending, torsion, and vibration under high speed and heavy transporting, it is of great significance to control the microstructure of the railway axle steel. In this study, the material behaviors including hot deformation and microstructure evolution of LZ50 steel are tested. According to the stress–strain and grain size of basic experiments, a mechanism-based constitutive model considering internal state variables of dislocation density, recrystallization fraction, and average grain size (AGS) is established to theoretically describe the macroscopical deformation and microstructure evolution of LZ50 steel. Subsequently, a finite element (FE) model of flexible skew rolling (FSR) bar is further developed via compiling the mechanism-based constitutive model into FE software by user-defined subroutine and its reliability has been verified by comparing the size of geometry and grain of experimental and FE results. The FE results show that the microstructure evolution mechanism of FSR rolling LZ50 steel is that hot plastic deformation leads to dislocation multiplication resulting in dynamic recrystallization and ultimately grain refinement. As the bar is formed by continuous FSR rolling, its microstructure is relatively uniform with the grain size of the outer layer slightly smaller than that of the inner layer because of the more severe deformation of the outer metal. The influence of FSR parameters on grain size reveals that the microstructure of the rolled bar is generally uniform in various situations and the parameter conditions of larger area reduction, longer sizing length, larger forming angle, and smaller skewing angle can improve the microstructure and properties of the FSR rolled bar by grain refinement.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.