Extended particle streak velocimetry (E-PSV) for a comprehensive view of film flows

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2025-01-07 DOI:10.1007/s00348-024-03931-9
Sebastian Sold, Matthias Rädle, Jens-Uwe Repke
{"title":"Extended particle streak velocimetry (E-PSV) for a comprehensive view of film flows","authors":"Sebastian Sold,&nbsp;Matthias Rädle,&nbsp;Jens-Uwe Repke","doi":"10.1007/s00348-024-03931-9","DOIUrl":null,"url":null,"abstract":"<div><p>Extended particle streak velocimetry (E-PSV) is a novel approach for comprehensive 2D flow measurement. It extends the measuring range of particle streak velocimetry (PSV) via particle tracking velocimetry (PTV). By using long camera exposure when recording moving tracer particles, streaks are created in areas of high flow velocities (PSV). In areas of low velocity, in contrast, particles are imaged point-shaped (PTV). E-PSV hereby offers the advantage of continuous measurement with PSV-typical setups, particularly when areas close to the wall and vortices require to be recorded simultaneously with areas of high velocity. For precise extraction of the flow information, a new model for the description of particle images is presented. It is based on the assumption that the intensity of a tracer can be modeled by a 2D Gaussian function. The temporal integral of the moving Gaussian is approximated by combining analytical calculation with values from a lookup table. We show that by this method even curved streaks can be reconstructed with subpixel accuracy under noise and quantization effects. The technique is demonstrated using a film flow in vicinity of a microstructure.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03931-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03931-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extended particle streak velocimetry (E-PSV) is a novel approach for comprehensive 2D flow measurement. It extends the measuring range of particle streak velocimetry (PSV) via particle tracking velocimetry (PTV). By using long camera exposure when recording moving tracer particles, streaks are created in areas of high flow velocities (PSV). In areas of low velocity, in contrast, particles are imaged point-shaped (PTV). E-PSV hereby offers the advantage of continuous measurement with PSV-typical setups, particularly when areas close to the wall and vortices require to be recorded simultaneously with areas of high velocity. For precise extraction of the flow information, a new model for the description of particle images is presented. It is based on the assumption that the intensity of a tracer can be modeled by a 2D Gaussian function. The temporal integral of the moving Gaussian is approximated by combining analytical calculation with values from a lookup table. We show that by this method even curved streaks can be reconstructed with subpixel accuracy under noise and quantization effects. The technique is demonstrated using a film flow in vicinity of a microstructure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展粒子条纹测速法(E-PSV)用于全面观察薄膜流动
扩展粒子条纹测速(E-PSV)是一种新的二维流量综合测量方法。它通过粒子跟踪测速(PTV)扩展了粒子条纹测速(PSV)的测量范围。当记录运动的示踪粒子时,通过长时间的相机曝光,在高流速(PSV)区域产生条纹。相反,在低速区域,粒子成像为点状(PTV)。因此,E-PSV提供了与psv典型设置连续测量的优势,特别是当靠近壁面和漩涡的区域需要与高速区域同时记录时。为了精确提取流动信息,提出了一种新的粒子图像描述模型。它基于示踪剂的强度可以用二维高斯函数建模的假设。移动高斯函数的时间积分是通过结合解析计算和查找表中的值来逼近的。结果表明,在噪声和量化影响下,该方法可以实现亚像素精度的曲线条纹重建。该技术在微观结构附近用膜流进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Comparison of displacement estimation techniques for background-oriented schlieren of high-speed compressible turbulent flows Plasma-based anti-/de-icing: an experimental study utilizing supercooled water droplet image velocimetry The effects of wall proximity on the turbulent flow field in a square duct structured with detached divergent ribs on one wall Experimental study on the mode switching of strong-amplitude tones in slat noise Variations in vortex structure with changes in swimming velocity during human underwater undulatory swimming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1