New Ionic Liquid Forms of Antituberculosis Drug Combinations for Optimized Stability and Dissolution

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2025-01-08 DOI:10.1208/s12249-024-03023-1
Hanan E. Rasmy, Sara A. Abouelmagd, Elsayed A. Ibrahim
{"title":"New Ionic Liquid Forms of Antituberculosis Drug Combinations for Optimized Stability and Dissolution","authors":"Hanan E. Rasmy,&nbsp;Sara A. Abouelmagd,&nbsp;Elsayed A. Ibrahim","doi":"10.1208/s12249-024-03023-1","DOIUrl":null,"url":null,"abstract":"<div><p>Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF. Antitubercular drugs, INH, or RIF, were paired with different counter ions (ascorbic acid (AsA), citric acid (CA), tartaric acid (TA), benzoic acid (BA), salicylic acid (SA), and p-amino salicylic acid (PAS)) using the solvent evaporation method. INH and RIF API-ILs were formed successfully using AsA and CA counter ions. IL formation was examined and analyzed using Fourier transform infrared (FTIR) spectroscopy, x-ray powder diffraction (XRPD), and polarized optical microscopy (POM). XRPD and POM confirmed their amorphous nature, while FTIR analysis demonstrated the contribution of hydrogen bonding to IL formation. IL formation enhanced the storage stability of the INH + RIF mixture in the presence of CA. Moreover, RIF-CA IL significantly increased the rate and extent of RIF dissolution. An effect that is unattainable with the RIF/CA physical mixture. Thus, API-IL formation not only enhances RIF dissolution but also facilitates the preparation of stable, compatible INH-RIF combinations.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-03023-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03023-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF. Antitubercular drugs, INH, or RIF, were paired with different counter ions (ascorbic acid (AsA), citric acid (CA), tartaric acid (TA), benzoic acid (BA), salicylic acid (SA), and p-amino salicylic acid (PAS)) using the solvent evaporation method. INH and RIF API-ILs were formed successfully using AsA and CA counter ions. IL formation was examined and analyzed using Fourier transform infrared (FTIR) spectroscopy, x-ray powder diffraction (XRPD), and polarized optical microscopy (POM). XRPD and POM confirmed their amorphous nature, while FTIR analysis demonstrated the contribution of hydrogen bonding to IL formation. IL formation enhanced the storage stability of the INH + RIF mixture in the presence of CA. Moreover, RIF-CA IL significantly increased the rate and extent of RIF dissolution. An effect that is unattainable with the RIF/CA physical mixture. Thus, API-IL formation not only enhances RIF dissolution but also facilitates the preparation of stable, compatible INH-RIF combinations.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型离子液体形式抗结核药物组合的稳定性和溶出度优化
异烟肼(INH)和利福平(RIF)是治疗结核病的两种主要药物。它们通常作为固定的药物组合使用,但它们的递送受到次优溶解度和物理不稳定性的挑战。本研究探讨了活性药物成分-离子液体(api - il)在改善INH和RIF的理化和药学性能方面的潜力。采用溶剂蒸发法将抗肿瘤药物INH或RIF与不同的反离子(抗坏血酸(AsA)、柠檬酸(CA)、酒石酸(TA)、苯甲酸(BA)、水杨酸(SA)和对氨基水杨酸(PAS))配对。用AsA和CA反离子制备了INH和RIF api - il。利用傅里叶变换红外光谱(FTIR)、x射线粉末衍射(XRPD)和偏振光学显微镜(POM)对IL的形成进行了检测和分析。XRPD和POM证实了它们的无定形性质,而FTIR分析证实了氢键对IL形成的贡献。在CA存在下,IL的形成增强了INH + RIF混合物的储存稳定性,并且RIF-CA IL显著增加了RIF溶解的速度和程度。RIF/CA物理混合无法达到的效果。因此,API-IL的形成不仅促进了RIF的溶解,而且有利于制备稳定、兼容的INH-RIF组合。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Biosimilars: A Critical Review of Development, Regulatory Landscape, and Clinical Implications. Valsartan Loaded Solid Self-Nanoemulsifying Delivery System to Enhance Oral Absorption and Bioavailability. Development and In-Vitro Tuning of Piperine Containing Solid Lipid Microparticles for the Treatment of Rheumatoid Arthritis Human Plasma-Derived Exosomes: A Promising Carrier System for the Delivery of Hydroxyurea to Combat Breast Cancer Design and Process Considerations for Preparation of Modified Release Ivermectin and Praziquantel Tablets by Wet Granulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1