{"title":"Enhanced causal effects estimation based on offline reinforcement learning","authors":"Huan Xia, Chaozhe Jiang, Chenyang Zhang","doi":"10.1007/s10489-024-06009-5","DOIUrl":null,"url":null,"abstract":"<div><p>Causal effects estimation is essential for analyzing the causal effects of treatment (intervention) on outcome, but traditional methods often rely on the strong assumption of no unobserved confounding factors. We propose ECEE-RL (Enhanced Causal Effects Estimation based on Reinforcement Learning), a novel architecture that leverages offline reinforcement learning to relax this assumption. ECEE-RL innovatively models causal effects estimation as a stateless Markov Decision Process, allowing for adaptive policy optimization through action-reward combinations. By framing estimation as \"actions\" and sensitivity analysis results as \"rewards\", ECEE-RL minimizes sensitivity to confounders, including unobserved ones. Theoretical analysis confirms the convergence and robustness of ECEE-RL. Experiments on the two simulated datasets demonstrate significant improvements, with CATE MSE reductions ranging from 5.45% to 66.55% and sensitivity significance reductions of up to 98.29% compared to baseline methods. These results corroborate our theoretical findings on ECEE-RL's improved accuracy and robustness. Application to real-world pilot-aircraft interaction data reveals significant causal effects of control behaviors on bioelectrical signals and emotions, demonstrating ECEE-RL's practical utility. While computationally intensive, ECEE-RL offers a promising approach for causal effects estimation, particularly in scenarios where unobserved confounding may be present, representing an important step towards more reliable causal inference in complex real-world settings.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06009-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Causal effects estimation is essential for analyzing the causal effects of treatment (intervention) on outcome, but traditional methods often rely on the strong assumption of no unobserved confounding factors. We propose ECEE-RL (Enhanced Causal Effects Estimation based on Reinforcement Learning), a novel architecture that leverages offline reinforcement learning to relax this assumption. ECEE-RL innovatively models causal effects estimation as a stateless Markov Decision Process, allowing for adaptive policy optimization through action-reward combinations. By framing estimation as "actions" and sensitivity analysis results as "rewards", ECEE-RL minimizes sensitivity to confounders, including unobserved ones. Theoretical analysis confirms the convergence and robustness of ECEE-RL. Experiments on the two simulated datasets demonstrate significant improvements, with CATE MSE reductions ranging from 5.45% to 66.55% and sensitivity significance reductions of up to 98.29% compared to baseline methods. These results corroborate our theoretical findings on ECEE-RL's improved accuracy and robustness. Application to real-world pilot-aircraft interaction data reveals significant causal effects of control behaviors on bioelectrical signals and emotions, demonstrating ECEE-RL's practical utility. While computationally intensive, ECEE-RL offers a promising approach for causal effects estimation, particularly in scenarios where unobserved confounding may be present, representing an important step towards more reliable causal inference in complex real-world settings.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.