Tingan Zhou, Young-Kyoung Park, Jing Fu, Piotr Hapeta, Cinzia Klemm, Rodrigo Ledesma-Amaro
{"title":"Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin","authors":"Tingan Zhou, Young-Kyoung Park, Jing Fu, Piotr Hapeta, Cinzia Klemm, Rodrigo Ledesma-Amaro","doi":"10.1186/s13068-024-02598-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.</p><h3>Results</h3><p>We constructed a <i>Yarrowia lipolytica</i> strain using hybrid promoters and copy number adjustment, which was able to produce 2.66 g/L of β-carotene, the precursor of crocetin. Next, the crocetin biosynthetic pathway was introduced, and we observed both the production and secretion of crocetin. Subsequently, the metabolite profiles under varied temperatures were studied and we found that low temperature was favorable for crocetin biosynthesis in <i>Y. lipolytica</i>. Therefore, a two-step temperature-shift fermentation strategy was adopted to optimize yeast growth and biosynthetic enzyme activity, bringing a 2.3-fold increase in crocetin titer. Lastly, fermentation media was fine-tuned for an optimal crocetin output of 30.17 mg/L, bringing a 51% higher titer compared with the previous highest report in shake flasks. Concomitantly, we also generated <i>Y. lipolytica</i> strains capable of achieving substantial zeaxanthin production, yielding 1575.09 mg/L, doubling the previous highest reported titer.</p><h3>Conclusions</h3><p>Through metabolic engineering and fermentation optimization, we demonstrated the first de novo biosynthesis of crocetin in the industrial yeast <i>Yarrowia lipolytica.</i> In addition, we achieved a higher crocetin titer in flasks than all our known reports. This work not only represents a high production of crocetin, but also entails a significant simultaneous zeaxanthin production, setting the stage for sustainable and cost-effective production of these valuable compounds.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02598-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02598-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.
Results
We constructed a Yarrowia lipolytica strain using hybrid promoters and copy number adjustment, which was able to produce 2.66 g/L of β-carotene, the precursor of crocetin. Next, the crocetin biosynthetic pathway was introduced, and we observed both the production and secretion of crocetin. Subsequently, the metabolite profiles under varied temperatures were studied and we found that low temperature was favorable for crocetin biosynthesis in Y. lipolytica. Therefore, a two-step temperature-shift fermentation strategy was adopted to optimize yeast growth and biosynthetic enzyme activity, bringing a 2.3-fold increase in crocetin titer. Lastly, fermentation media was fine-tuned for an optimal crocetin output of 30.17 mg/L, bringing a 51% higher titer compared with the previous highest report in shake flasks. Concomitantly, we also generated Y. lipolytica strains capable of achieving substantial zeaxanthin production, yielding 1575.09 mg/L, doubling the previous highest reported titer.
Conclusions
Through metabolic engineering and fermentation optimization, we demonstrated the first de novo biosynthesis of crocetin in the industrial yeast Yarrowia lipolytica. In addition, we achieved a higher crocetin titer in flasks than all our known reports. This work not only represents a high production of crocetin, but also entails a significant simultaneous zeaxanthin production, setting the stage for sustainable and cost-effective production of these valuable compounds.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis