D. I. Gavrilov, V. V. Morozov, I. V. Belyaev, A. V. Zhdanov, N. S. Dovbysh
{"title":"Possibility of Improving the Performance Characteristics of Kh12MF Die Steel by Gas–Powder Laser Cladding","authors":"D. I. Gavrilov, V. V. Morozov, I. V. Belyaev, A. V. Zhdanov, N. S. Dovbysh","doi":"10.1134/S0036029524701131","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The possibility of improving the performance characteristics of Kh12MF die steel using gas–powder laser cladding and a nickel-based powder alloy containing 60% tungsten carbide as a cladding material is investigated. Laser cladding is carried out using a domestic SVAROG-1-5DR laser installation equipped with a 5-kW fiber diode laser. Laser cladding conditions have been experimentally selected. The microstructure, microhardness, and chemical composition of the deposited layer and the substrate are studied on transverse metallographic sections. Laser cladding is found to provide reliable melting of a carbide-containing powder material to the substrate and to significantly increase the surface hardness of Kh12MF steel. The hardness of the Kh12MF steel increases to 75.3 HRC upon cladding at <i>P</i> = 5 kW, <i>V</i> = 7 mm/s, and <i>F</i> = 30 mm.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":"2024 3","pages":"690 - 697"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029524701131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract—The possibility of improving the performance characteristics of Kh12MF die steel using gas–powder laser cladding and a nickel-based powder alloy containing 60% tungsten carbide as a cladding material is investigated. Laser cladding is carried out using a domestic SVAROG-1-5DR laser installation equipped with a 5-kW fiber diode laser. Laser cladding conditions have been experimentally selected. The microstructure, microhardness, and chemical composition of the deposited layer and the substrate are studied on transverse metallographic sections. Laser cladding is found to provide reliable melting of a carbide-containing powder material to the substrate and to significantly increase the surface hardness of Kh12MF steel. The hardness of the Kh12MF steel increases to 75.3 HRC upon cladding at P = 5 kW, V = 7 mm/s, and F = 30 mm.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.