Yoseop Yoon, Elodie Bournique, Lindsey V. Soles, Hong Yin, Hsu-Feng Chu, Christopher Yin, Yinyin Zhuang, Xiangyang Liu, Liang Liu, Joshua Jeong, Clinton Yu, Marielle Valdez, Lusong Tian, Lan Huang, Xiaoyu Shi, Georg Seelig, Fangyuan Ding, Liang Tong, Rémi Buisson, Yongsheng Shi
{"title":"RBBP6 anchors pre-mRNA 3′ end processing to nuclear speckles for efficient gene expression","authors":"Yoseop Yoon, Elodie Bournique, Lindsey V. Soles, Hong Yin, Hsu-Feng Chu, Christopher Yin, Yinyin Zhuang, Xiangyang Liu, Liang Liu, Joshua Jeong, Clinton Yu, Marielle Valdez, Lusong Tian, Lan Huang, Xiaoyu Shi, Georg Seelig, Fangyuan Ding, Liang Tong, Rémi Buisson, Yongsheng Shi","doi":"10.1016/j.molcel.2024.12.016","DOIUrl":null,"url":null,"abstract":"Pre-mRNA 3′ processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3′ processing in human cells. We show that the essential pre-mRNA 3′ processing factor retinoblastoma-binding protein 6 (RBBP6) associates strongly with NSs via its C-terminal intrinsically disordered region (IDR). Importantly, although the conserved N-terminal domain (NTD) of RBBP6 is sufficient for pre-mRNA 3′ processing <em>in vitro</em>, its IDR-mediated association with NSs is required for efficient pre-mRNA 3′ processing in cells. Through proximity labeling analyses, we provide evidence that pre-mRNA 3′ processing for over 50% of genes occurs near NSs. We propose that NSs serve as hubs for RNA polymerase II transcription, pre-mRNA splicing, and 3′ processing, thereby enhancing the efficiency and coordination of different gene expression steps.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"2 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.12.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-mRNA 3′ processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3′ processing in human cells. We show that the essential pre-mRNA 3′ processing factor retinoblastoma-binding protein 6 (RBBP6) associates strongly with NSs via its C-terminal intrinsically disordered region (IDR). Importantly, although the conserved N-terminal domain (NTD) of RBBP6 is sufficient for pre-mRNA 3′ processing in vitro, its IDR-mediated association with NSs is required for efficient pre-mRNA 3′ processing in cells. Through proximity labeling analyses, we provide evidence that pre-mRNA 3′ processing for over 50% of genes occurs near NSs. We propose that NSs serve as hubs for RNA polymerase II transcription, pre-mRNA splicing, and 3′ processing, thereby enhancing the efficiency and coordination of different gene expression steps.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.