{"title":"Enhanced melting dynamics of phase change material (PCM) based energy storage system combining modified fin and nanoparticles under solar irradiation","authors":"Anjan Nandi, Nirmalendu Biswas","doi":"10.1108/hff-08-2024-0643","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the thermal performance enhancements of phase change materials (PCMs) through the integration of extended fins and CuO nanoparticles under the impact of solar irradiation. The research focuses on improving the melting behavior and thermal efficiency of PCM-based energy storage systems to facilitate the design of more efficient energy storage solutions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The analysis is conducted on a top-heated rectangular thermal system filled with pure PCM and nanoparticle-enhanced PCM (NePCM) mixed with 0.01% Wt. CuO nanoparticles, with varying fin configurations considering PCM volume and surface area of fins constraint. The shape of the fin is modified from single to multiple numbers, maintaining the same surface area. The analysis is carried out both experimentally and numerically for the without fin case, and the study is extended numerically (utilizing the finite volume method) considering different sizes and positions of the fins. The study evaluates the impact of nanoparticle inclusion, fin geometry variations and the thermal performance of three different types of PCM (lauric acid, RT-35HC and P-58). Numerical results are validated against the in-house experimental results.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The study successfully validates the numerical simulations with experimental data, enhancing the credibility of the findings for real-world applications. The addition of 0.01% Wt. CuO nanoparticles to PCM resulted in a 16.36% enhancement in energy storage, as observed experimentally, whereas the numerical simulation showed an 8.55% increase. The inclusion of CuO nanoparticles accelerated the melting process across all fin configurations, with a notable enhancement parameter of 16.51% for the single fin arrangement. The introduction of a single fin structure increased the energy storage rate, but further additions of fins led to diminishing returns, with a maximum energy storage rate of 35.19 J/min achieved with CuO-enhanced PCM in the presence of single fin. The study also highlights RT-35HC as the most effective PCM, offering the highest energy storage and fastest melting speed, making it ideal for rapid thermal response applications.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>Future research could explore different types and concentrations of nanoparticles as well as a broader range of fin geometries and materials to further enhance the performance of PCM-based energy storage systems. Long-term experimental validation under real-world conditions would also enhance the applicability and reliability of the findings.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study provides valuable insights into optimizing thermal energy storage systems by combining nanoparticle enhancement and fin geometry optimization. The results offer practical guidance for improving the efficiency and effectiveness of PCM-based energy storage units in various applications.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"24 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-08-2024-0643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to investigate the thermal performance enhancements of phase change materials (PCMs) through the integration of extended fins and CuO nanoparticles under the impact of solar irradiation. The research focuses on improving the melting behavior and thermal efficiency of PCM-based energy storage systems to facilitate the design of more efficient energy storage solutions.
Design/methodology/approach
The analysis is conducted on a top-heated rectangular thermal system filled with pure PCM and nanoparticle-enhanced PCM (NePCM) mixed with 0.01% Wt. CuO nanoparticles, with varying fin configurations considering PCM volume and surface area of fins constraint. The shape of the fin is modified from single to multiple numbers, maintaining the same surface area. The analysis is carried out both experimentally and numerically for the without fin case, and the study is extended numerically (utilizing the finite volume method) considering different sizes and positions of the fins. The study evaluates the impact of nanoparticle inclusion, fin geometry variations and the thermal performance of three different types of PCM (lauric acid, RT-35HC and P-58). Numerical results are validated against the in-house experimental results.
Findings
The study successfully validates the numerical simulations with experimental data, enhancing the credibility of the findings for real-world applications. The addition of 0.01% Wt. CuO nanoparticles to PCM resulted in a 16.36% enhancement in energy storage, as observed experimentally, whereas the numerical simulation showed an 8.55% increase. The inclusion of CuO nanoparticles accelerated the melting process across all fin configurations, with a notable enhancement parameter of 16.51% for the single fin arrangement. The introduction of a single fin structure increased the energy storage rate, but further additions of fins led to diminishing returns, with a maximum energy storage rate of 35.19 J/min achieved with CuO-enhanced PCM in the presence of single fin. The study also highlights RT-35HC as the most effective PCM, offering the highest energy storage and fastest melting speed, making it ideal for rapid thermal response applications.
Research limitations/implications
Future research could explore different types and concentrations of nanoparticles as well as a broader range of fin geometries and materials to further enhance the performance of PCM-based energy storage systems. Long-term experimental validation under real-world conditions would also enhance the applicability and reliability of the findings.
Originality/value
This study provides valuable insights into optimizing thermal energy storage systems by combining nanoparticle enhancement and fin geometry optimization. The results offer practical guidance for improving the efficiency and effectiveness of PCM-based energy storage units in various applications.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf