Deep mantle earthquakes linked to CO2 degassing at the mid-Atlantic ridge

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-10 DOI:10.1038/s41467-024-55792-9
Zhiteng Yu, Satish C. Singh, Cédric Hamelin, Léa Grenet, Marcia Maia, Anne Briais, Lorenzo Petracchini, Daniele Brunelli
{"title":"Deep mantle earthquakes linked to CO2 degassing at the mid-Atlantic ridge","authors":"Zhiteng Yu, Satish C. Singh, Cédric Hamelin, Léa Grenet, Marcia Maia, Anne Briais, Lorenzo Petracchini, Daniele Brunelli","doi":"10.1038/s41467-024-55792-9","DOIUrl":null,"url":null,"abstract":"<p>Volatiles (CO<sub>2</sub>, H<sub>2</sub>O) play a fundamental role in mantle melting beneath ocean spreading centers, but what role they play during the melt migration remains unknown. Using seismological data recorded by ocean-bottom seismometers, here we report the presence of deep earthquakes at 10–20 km depth in the mantle along the Mid-Atlantic Ridge axis, much below the brittle-ductile boundary. Syntheses of regional basaltic rock samples and their geochemical analyses indicate the presence of an abnormally high quantity of CO<sub>2</sub> (~0.4–3.0 wt%) in the primary melts. As the degassing of a high concentration of dissolved CO<sub>2</sub> produces volume change, we suggest that deep earthquakes in the mantle result from the degassing of CO<sub>2</sub>. The large concentration of CO<sub>2</sub> in the primitive melt will influence the presence of melt beneath the lithosphere-asthenosphere boundary at sub-solidus temperatures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55792-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Volatiles (CO2, H2O) play a fundamental role in mantle melting beneath ocean spreading centers, but what role they play during the melt migration remains unknown. Using seismological data recorded by ocean-bottom seismometers, here we report the presence of deep earthquakes at 10–20 km depth in the mantle along the Mid-Atlantic Ridge axis, much below the brittle-ductile boundary. Syntheses of regional basaltic rock samples and their geochemical analyses indicate the presence of an abnormally high quantity of CO2 (~0.4–3.0 wt%) in the primary melts. As the degassing of a high concentration of dissolved CO2 produces volume change, we suggest that deep earthquakes in the mantle result from the degassing of CO2. The large concentration of CO2 in the primitive melt will influence the presence of melt beneath the lithosphere-asthenosphere boundary at sub-solidus temperatures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Local kernel renormalization as a mechanism for feature learning in overparametrized convolutional neural networks Low-power edge detection based on ferroelectric field-effect transistor Deep mantle earthquakes linked to CO2 degassing at the mid-Atlantic ridge Governance of Indigenous data in open earth systems science Heterochromatic gene silencing controls CD4+ T cell susceptibility to regulatory T cell-mediated suppression in a murine allograft model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1