Maria Kauppi, Craig D. Hyland, Elizabeth M. Viney, Christine A. White, Carolyn A. de Graaf, AnneMarie E. Welch, Jumana Yousef, Laura F. Dagley, Samantha J. Emery-Corbin, Ladina Di Rago, Andrew J. Kueh, Marco J. Herold, Douglas J. Hilton, Jeffrey J. Babon, Nicos A. Nicola, Kira Behrens, Warren S. Alexander
{"title":"Cullin-5 controls the number of megakaryocyte-committed stem cells to prevent thrombocytosis in mice","authors":"Maria Kauppi, Craig D. Hyland, Elizabeth M. Viney, Christine A. White, Carolyn A. de Graaf, AnneMarie E. Welch, Jumana Yousef, Laura F. Dagley, Samantha J. Emery-Corbin, Ladina Di Rago, Andrew J. Kueh, Marco J. Herold, Douglas J. Hilton, Jeffrey J. Babon, Nicos A. Nicola, Kira Behrens, Warren S. Alexander","doi":"10.1182/blood.2024025406","DOIUrl":null,"url":null,"abstract":"Cullin-5 (Cul5) coordinates the assembly of cullin-RING-E3 ubiquitin ligase complexes that include the suppressors of cytokine signaling (SOCS)-box–containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway. However, the roles of most SOCS-box proteins have not been studied in physiological contexts and any actions for Cul5/SOCS complexes in signaling by several hematopoietic cytokines, including thrombopoietin (TPO) and interleukin-3 (IL-3), remain unknown. To define additional potential roles for Cul5/SOCS complexes, we generated mice lacking Cul5 in hematopoiesis; the absence of Cul5 is predicted to impair the SOCS-box–dependent actions of all proteins that contain this motif. Here, we show that Cul5-deficient mice develop excess megakaryopoiesis and thrombocytosis revealing a novel mechanism of negative regulation of megakaryocyte-committed stem cells, a distinct population within the hematopoietic stem cell pool that have been shown to rapidly, perhaps directly, generate megakaryocytes, and which are produced in excess in the absence of Cul5. Cul5-deficient megakaryopoiesis is distinctive in being largely independent of TPO/Mpl and involves signaling via the β-common and/or β-IL-3 receptors, with evidence of deregulated responses to IL-3. This process is independent of the interferon-α/β receptor, previously implicated in inflammation-induced activation of stem-like megakaryocyte progenitor cells.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"28 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024025406","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cullin-5 (Cul5) coordinates the assembly of cullin-RING-E3 ubiquitin ligase complexes that include the suppressors of cytokine signaling (SOCS)-box–containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway. However, the roles of most SOCS-box proteins have not been studied in physiological contexts and any actions for Cul5/SOCS complexes in signaling by several hematopoietic cytokines, including thrombopoietin (TPO) and interleukin-3 (IL-3), remain unknown. To define additional potential roles for Cul5/SOCS complexes, we generated mice lacking Cul5 in hematopoiesis; the absence of Cul5 is predicted to impair the SOCS-box–dependent actions of all proteins that contain this motif. Here, we show that Cul5-deficient mice develop excess megakaryopoiesis and thrombocytosis revealing a novel mechanism of negative regulation of megakaryocyte-committed stem cells, a distinct population within the hematopoietic stem cell pool that have been shown to rapidly, perhaps directly, generate megakaryocytes, and which are produced in excess in the absence of Cul5. Cul5-deficient megakaryopoiesis is distinctive in being largely independent of TPO/Mpl and involves signaling via the β-common and/or β-IL-3 receptors, with evidence of deregulated responses to IL-3. This process is independent of the interferon-α/β receptor, previously implicated in inflammation-induced activation of stem-like megakaryocyte progenitor cells.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.