Selection of solvents for integrated CO2 absorption and electrochemical reduction systems

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2025-01-10 DOI:10.1002/aic.18734
Fragkiskos Tzirakis, Luis A. Diaz, Ioannis Chararas, Daniel Molina Montes de Oca, Zeyu Zhao, Panos Seferlis, Ioannis Tsivintzelis, Athanasios I. Papadopoulos
{"title":"Selection of solvents for integrated CO2 absorption and electrochemical reduction systems","authors":"Fragkiskos Tzirakis, Luis A. Diaz, Ioannis Chararas, Daniel Molina Montes de Oca, Zeyu Zhao, Panos Seferlis, Ioannis Tsivintzelis, Athanasios I. Papadopoulos","doi":"10.1002/aic.18734","DOIUrl":null,"url":null,"abstract":"Solvent-based electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>R) enables the production of chemicals or fuels using CO<sub>2</sub> from a preceding absorption process. Employing previously tested CO<sub>2</sub> capture solvents does not ensure their suitability for either CO<sub>2</sub>R or integrated CO<sub>2</sub> absorption-reduction. We propose solvent selection criteria that include the CO<sub>2</sub> solubility, kinetic constant, ionic conductivity, concentration of the bicarbonate, carbamate, and solvent cation in the CO<sub>2</sub>-loaded solution, and sustainability indicators. They are implemented for solvent selection (a) from novel, aqueous mixtures of <i>N</i>-methylcyclohexylamine (MCA) with piperazine (PZ), 2-amino-2-methyl-1-propanol (AMP), potassium hydroxide (KOH), and potassium chloride (KCl) and (b) from aqueous monoethanolamine (MEA), AMP, KOH, MCA, and PZ solutions. Versions of a modified Kent-Eisenberg model for strong bases, carbamate, and non-carbamate-forming amine solutions are developed and parameterized through experimental equilibrium measurements. CO<sub>2</sub>R experimental results are presented for solutions of KOH and MCA + KOH, as these indicate desired trade-offs for CO<sub>2</sub> absorption and reduction.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18734","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solvent-based electrochemical CO2 reduction (CO2R) enables the production of chemicals or fuels using CO2 from a preceding absorption process. Employing previously tested CO2 capture solvents does not ensure their suitability for either CO2R or integrated CO2 absorption-reduction. We propose solvent selection criteria that include the CO2 solubility, kinetic constant, ionic conductivity, concentration of the bicarbonate, carbamate, and solvent cation in the CO2-loaded solution, and sustainability indicators. They are implemented for solvent selection (a) from novel, aqueous mixtures of N-methylcyclohexylamine (MCA) with piperazine (PZ), 2-amino-2-methyl-1-propanol (AMP), potassium hydroxide (KOH), and potassium chloride (KCl) and (b) from aqueous monoethanolamine (MEA), AMP, KOH, MCA, and PZ solutions. Versions of a modified Kent-Eisenberg model for strong bases, carbamate, and non-carbamate-forming amine solutions are developed and parameterized through experimental equilibrium measurements. CO2R experimental results are presented for solutions of KOH and MCA + KOH, as these indicate desired trade-offs for CO2 absorption and reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Integrated learning-based estimation and nonlinear predictive control of an ammonia synthesis reactor Experimental and molecular thermodynamics insights into separating bicyclic aromatics from diesel oil with ionic liquids Selection of solvents for integrated CO2 absorption and electrochemical reduction systems Deep extractive denitrogenation with Cu-based ionic liquids and mechanistic insights Highly selective deep eutectic solvents for the recovery of lithium from high sodium concentration aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1