{"title":"Latent Weight Quantization for Integerized Training of Deep Neural Networks","authors":"Wen Fei;Wenrui Dai;Liang Zhang;Luoming Zhang;Chenglin Li;Junni Zou;Hongkai Xiong","doi":"10.1109/TPAMI.2025.3527498","DOIUrl":null,"url":null,"abstract":"Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimizing the integerized weights. In this paper, we propose the first latent weight quantization schema for general integerized training, which minimizes quantization perturbation to training process via residual quantization with optimized dual quantizer. We leverage residual quantization to eliminate the correlation between latent weight and integerized weight for suppressing quantization noise. We further propose dual quantizer with optimal nonuniform codebook to avoid frozen weight and ensure statistically unbiased training trajectory as full-precision latent weight. The codebook is optimized to minimize the disturbance on weight update under importance guidance and achieved with a three-segment polyline approximation for hardware-friendly implementation. Extensive experiments show that the proposed schema allows integerized training with lowest 4-bit latent weight for various architectures including ResNets, MobileNetV2, and Transformers, and yields negligible performance loss in image classification and text generation. Furthermore, we successfully fine-tune Large Language Models with up to 13 billion parameters on one single GPU using the proposed schema.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2816-2832"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10834560/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Existing methods for integerized training speed up deep learning by using low-bitwidth integerized weights, activations, gradients, and optimizer buffers. However, they overlook the issue of full-precision latent weights, which consume excessive memory to accumulate gradient-based updates for optimizing the integerized weights. In this paper, we propose the first latent weight quantization schema for general integerized training, which minimizes quantization perturbation to training process via residual quantization with optimized dual quantizer. We leverage residual quantization to eliminate the correlation between latent weight and integerized weight for suppressing quantization noise. We further propose dual quantizer with optimal nonuniform codebook to avoid frozen weight and ensure statistically unbiased training trajectory as full-precision latent weight. The codebook is optimized to minimize the disturbance on weight update under importance guidance and achieved with a three-segment polyline approximation for hardware-friendly implementation. Extensive experiments show that the proposed schema allows integerized training with lowest 4-bit latent weight for various architectures including ResNets, MobileNetV2, and Transformers, and yields negligible performance loss in image classification and text generation. Furthermore, we successfully fine-tune Large Language Models with up to 13 billion parameters on one single GPU using the proposed schema.