B(MIDA)-directed site-selective intermolecular halofluoroalkylation of alkenes: synthesis of diversely functionalized building blocks

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-01-10 DOI:10.1039/d4sc07900k
Hengbo Wu, Ruitong Luo, Jingjing Peng, Zijian Han, Renjie Zhang, Zhijian Xu, Weiliang Zhu, Hong Liu, Chunpu Li
{"title":"B(MIDA)-directed site-selective intermolecular halofluoroalkylation of alkenes: synthesis of diversely functionalized building blocks","authors":"Hengbo Wu, Ruitong Luo, Jingjing Peng, Zijian Han, Renjie Zhang, Zhijian Xu, Weiliang Zhu, Hong Liu, Chunpu Li","doi":"10.1039/d4sc07900k","DOIUrl":null,"url":null,"abstract":"α-Halo borides are generally constructed <em>via</em> Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the <em>N</em>-methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes <em>via</em> a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C–X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd–X bond and assist in C–X bond formation and is verified by DFT calculations. As a result, a wide variety of highly functionalized fluorinated α-halo boronates, including drugs and natural products, are obtained in good or moderate yields through the unique catalytic manifold. Notably, the trifunctionalized (F, X, B) building block could be transformed into diverse modified fluorinated products.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"75 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07900k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

α-Halo borides are generally constructed via Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the N-methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes via a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C–X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd–X bond and assist in C–X bond formation and is verified by DFT calculations. As a result, a wide variety of highly functionalized fluorinated α-halo boronates, including drugs and natural products, are obtained in good or moderate yields through the unique catalytic manifold. Notably, the trifunctionalized (F, X, B) building block could be transformed into diverse modified fluorinated products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Enhancing Organic Cathodes of Aqueous Zinc-Ion Batteries via Nitro Group Modification Rapid access to functionalized nanographenes through a palladium-catalyzed multi-annulation sequence Rational pore engineering reveals the relative contribution of enzymatic sites and self-assembly towards rapid ferroxidase activity and mineralization: Impact of electrostatic guiding and cage-confinement in bacterioferritin Dynamics and Kinetic Exploration of Oxygen Reduction Reaction at Fe-N4/C-water Interface Accelerated by Machine Learning Force Field Colloidally Uniform Single Crystal Precursors Enable Uniform FAPbI3 Films for Efficient Perovskite Submodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1