Maksim Nikitin, Sándor B. Ötvös, Indrajit Ghosh, Maximilian Philipp, Ruth Gschwind, C. Oliver Kappe, Burkhard König
{"title":"Brønsted Acid-Facilitated Thioetherification Cross-Coupling Reactions with Nickel and Visible Light","authors":"Maksim Nikitin, Sándor B. Ötvös, Indrajit Ghosh, Maximilian Philipp, Ruth Gschwind, C. Oliver Kappe, Burkhard König","doi":"10.1021/acscatal.4c06734","DOIUrl":null,"url":null,"abstract":"Transition metal-catalyzed cross-coupling reactions are essential in modern organic synthesis, facilitating the rapid creation of complex molecular structures. Traditionally, these reactions rely heavily on conventional bases, with only a few exceptions reported. Recently, we developed adaptive dynamic homogeneous catalysis (AD-HoC), a method that enables C(sp<sup>2</sup>)–S cross-couplings without needing traditional ligands, bases, or additives. Given the growing demand for protocols compatible with acidic conditions in metal-catalyzed cross-couplings, we revisited AD-HoC to pioneer acid-facilitated transition metal-catalyzed thioetherification. Our method enables the swift synthesis of thioethers using nickel and visible light, with a substoichiometric amount of Brønsted acid acting as an enabler. NMR kinetic studies indicate that in the absence of acid, the system displays an induction period characteristic of autocatalysis. Introducing the acid as a simple additive eliminates this induction period and significantly accelerates the reaction. Moreover, the protocol has been successfully scaled to gram-level synthesis using continuous flow technology, achieving productivities of over 100 g per hour in a commercially available lab-scale photoreactor. This highlights the method’s robustness and scalability, making it a powerful tool for large-scale applications.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"16 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06734","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal-catalyzed cross-coupling reactions are essential in modern organic synthesis, facilitating the rapid creation of complex molecular structures. Traditionally, these reactions rely heavily on conventional bases, with only a few exceptions reported. Recently, we developed adaptive dynamic homogeneous catalysis (AD-HoC), a method that enables C(sp2)–S cross-couplings without needing traditional ligands, bases, or additives. Given the growing demand for protocols compatible with acidic conditions in metal-catalyzed cross-couplings, we revisited AD-HoC to pioneer acid-facilitated transition metal-catalyzed thioetherification. Our method enables the swift synthesis of thioethers using nickel and visible light, with a substoichiometric amount of Brønsted acid acting as an enabler. NMR kinetic studies indicate that in the absence of acid, the system displays an induction period characteristic of autocatalysis. Introducing the acid as a simple additive eliminates this induction period and significantly accelerates the reaction. Moreover, the protocol has been successfully scaled to gram-level synthesis using continuous flow technology, achieving productivities of over 100 g per hour in a commercially available lab-scale photoreactor. This highlights the method’s robustness and scalability, making it a powerful tool for large-scale applications.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.