Brønsted Acid-Facilitated Thioetherification Cross-Coupling Reactions with Nickel and Visible Light

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-01-09 DOI:10.1021/acscatal.4c06734
Maksim Nikitin, Sándor B. Ötvös, Indrajit Ghosh, Maximilian Philipp, Ruth Gschwind, C. Oliver Kappe, Burkhard König
{"title":"Brønsted Acid-Facilitated Thioetherification Cross-Coupling Reactions with Nickel and Visible Light","authors":"Maksim Nikitin, Sándor B. Ötvös, Indrajit Ghosh, Maximilian Philipp, Ruth Gschwind, C. Oliver Kappe, Burkhard König","doi":"10.1021/acscatal.4c06734","DOIUrl":null,"url":null,"abstract":"Transition metal-catalyzed cross-coupling reactions are essential in modern organic synthesis, facilitating the rapid creation of complex molecular structures. Traditionally, these reactions rely heavily on conventional bases, with only a few exceptions reported. Recently, we developed adaptive dynamic homogeneous catalysis (AD-HoC), a method that enables C(sp<sup>2</sup>)–S cross-couplings without needing traditional ligands, bases, or additives. Given the growing demand for protocols compatible with acidic conditions in metal-catalyzed cross-couplings, we revisited AD-HoC to pioneer acid-facilitated transition metal-catalyzed thioetherification. Our method enables the swift synthesis of thioethers using nickel and visible light, with a substoichiometric amount of Brønsted acid acting as an enabler. NMR kinetic studies indicate that in the absence of acid, the system displays an induction period characteristic of autocatalysis. Introducing the acid as a simple additive eliminates this induction period and significantly accelerates the reaction. Moreover, the protocol has been successfully scaled to gram-level synthesis using continuous flow technology, achieving productivities of over 100 g per hour in a commercially available lab-scale photoreactor. This highlights the method’s robustness and scalability, making it a powerful tool for large-scale applications.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"16 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06734","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal-catalyzed cross-coupling reactions are essential in modern organic synthesis, facilitating the rapid creation of complex molecular structures. Traditionally, these reactions rely heavily on conventional bases, with only a few exceptions reported. Recently, we developed adaptive dynamic homogeneous catalysis (AD-HoC), a method that enables C(sp2)–S cross-couplings without needing traditional ligands, bases, or additives. Given the growing demand for protocols compatible with acidic conditions in metal-catalyzed cross-couplings, we revisited AD-HoC to pioneer acid-facilitated transition metal-catalyzed thioetherification. Our method enables the swift synthesis of thioethers using nickel and visible light, with a substoichiometric amount of Brønsted acid acting as an enabler. NMR kinetic studies indicate that in the absence of acid, the system displays an induction period characteristic of autocatalysis. Introducing the acid as a simple additive eliminates this induction period and significantly accelerates the reaction. Moreover, the protocol has been successfully scaled to gram-level synthesis using continuous flow technology, achieving productivities of over 100 g per hour in a commercially available lab-scale photoreactor. This highlights the method’s robustness and scalability, making it a powerful tool for large-scale applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brønsted酸促进硫醚化与镍的交叉偶联反应和可见光
过渡金属催化的交叉偶联反应在现代有机合成中是必不可少的,它促进了复杂分子结构的快速生成。传统上,这些反应在很大程度上依赖于传统的碱基,只有少数例外报道。最近,我们开发了自适应动态均相催化(AD-HoC),一种无需传统配体、碱或添加剂即可实现C(sp2) -S交叉偶联的方法。鉴于对金属催化交叉偶联中与酸性条件兼容的方案的需求不断增长,我们重新审视了AD-HoC,以开拓酸促进过渡金属催化的硫醚化。我们的方法可以使用镍和可见光快速合成硫醚,并使用亚化学计量量的Brønsted酸作为促进剂。核磁共振动力学研究表明,在没有酸的情况下,体系表现出自催化的诱导期特征。引入酸作为简单的添加剂消除了这个诱导期,并显著加速了反应。此外,该方案已成功缩放到克级合成使用连续流技术,实现生产超过100克每小时在商业实验室规模的光反应器。这突出了该方法的健壮性和可伸缩性,使其成为大规模应用程序的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Surface Engineering of Indium Oxide by Nickel Oxide Clusters for Driving Methanol Production from CO2 Hydrogenation Catalyzing Success: 10 Years of AstraZeneca and Leonori Group Collaboration In Situ Generated Triazine Co-Catalyst Unlocks Amidine Arylation under Dual Nickel/Photoredox Catalysis: A Platform for Mild C–N Bond Formation Surface and Interface Properties of Metal Species for Waste Plastic Hydroconversion Synergistic Metal-Acid Unit for Boosting Tandem Catalysis via Efficient Transformation of the Key Intermediate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1