Influence of the Spin Hall Effect on the Resonance Frequency and Magnetic Susceptibility of a Magnonic Waveguide

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY JETP Letters Pub Date : 2025-01-10 DOI:10.1134/S0021364024603622
O. S. Temnaya, S. A. Nikitov
{"title":"Influence of the Spin Hall Effect on the Resonance Frequency and Magnetic Susceptibility of a Magnonic Waveguide","authors":"O. S. Temnaya,&nbsp;S. A. Nikitov","doi":"10.1134/S0021364024603622","DOIUrl":null,"url":null,"abstract":"<p>The effect of the variation of the spin current on the magnetic susceptibility of a magnonic waveguide in the form of a “ferromagnet–normal metal” heterostructure is investigated. Based on the Landau–Lifshitz–Gilbert model with the current term in the Slonczewski–Berger form, which describes the magnetization dynamics including the spin moment transfer, expressions are obtained for the real and imaginary parts of the magnetic susceptibility in the geometry of surface spin waves in the damping mode. The resulting model correctly approximates experimental data demonstrating an increase in the amplitude of spin waves propagating in a YIG/Pt heterostructure. It is shown that an increase in the spin current leads to an increase in the resonance frequency of spin waves and in the magnetic susceptibility tensor components in resonance. The results of this study can be used to design waveguides for spin waves with controllable losses and high-sensitivity magnetic field sensors.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 10","pages":"747 - 750"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364024603622.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024603622","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of the variation of the spin current on the magnetic susceptibility of a magnonic waveguide in the form of a “ferromagnet–normal metal” heterostructure is investigated. Based on the Landau–Lifshitz–Gilbert model with the current term in the Slonczewski–Berger form, which describes the magnetization dynamics including the spin moment transfer, expressions are obtained for the real and imaginary parts of the magnetic susceptibility in the geometry of surface spin waves in the damping mode. The resulting model correctly approximates experimental data demonstrating an increase in the amplitude of spin waves propagating in a YIG/Pt heterostructure. It is shown that an increase in the spin current leads to an increase in the resonance frequency of spin waves and in the magnetic susceptibility tensor components in resonance. The results of this study can be used to design waveguides for spin waves with controllable losses and high-sensitivity magnetic field sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
期刊最新文献
Effect of Electron-Deficient Substitution on the Spin Dynamics in FeGa3 Generation and Absorption of Photons by a Two-Level Atom Ultrastrongly Coupled to an Electromagnetic Field Influence of the Spin Hall Effect on the Resonance Frequency and Magnetic Susceptibility of a Magnonic Waveguide Small-Scale Light Structures in a Kerr Medium Nanostructured Gd2O3:Yb Micropowder for Antibacterial Hyperthermia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1