DASP: Hierarchical Offline Reinforcement Learning via Diffusion Autodecoder and Skill Primitive

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-25 DOI:10.1109/LRA.2024.3522842
Sicheng Liu;Yunchuan Zhang;Wenbai Chen;Peiliang Wu
{"title":"DASP: Hierarchical Offline Reinforcement Learning via Diffusion Autodecoder and Skill Primitive","authors":"Sicheng Liu;Yunchuan Zhang;Wenbai Chen;Peiliang Wu","doi":"10.1109/LRA.2024.3522842","DOIUrl":null,"url":null,"abstract":"Offline reinforcement learning strives to enable agents to effectively utilize pre-collected offline datasets for learning. Such an offline setup tremendously mitigates the problems of online reinforcement learning algorithms in real-world applications, particularly in scenarios where interactions are constrained or exploration is costly. The learned strategy, on the other hand, has a distributional bias with respect to the behavioral strategy, which consequently leads to the problem of extrapolation error for out-of-distribution actions. To mitigate this problem, in this paper, we adopt a hierarchical offline reinforcement learning framework that extracts recurrent and spatio-temporally extended primitive skills from offline data before using them for downstream task learning. Besides, we introduce an autodecoder conditional diffusion model to characterize low-level strategy decoding. Such a deep learning generative model enables the reduction of action primitives for the strategy space, which is then used to learn high-level task strategy-guided primitives via the offline learning algorithm IQL. Experimental results and ablation studies on D4RL benchmark tasks (Antmaze, Adroit and Kitchen) demonstrate that our approach achieves SOTA performance in most tasks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1649-1655"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816163/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Offline reinforcement learning strives to enable agents to effectively utilize pre-collected offline datasets for learning. Such an offline setup tremendously mitigates the problems of online reinforcement learning algorithms in real-world applications, particularly in scenarios where interactions are constrained or exploration is costly. The learned strategy, on the other hand, has a distributional bias with respect to the behavioral strategy, which consequently leads to the problem of extrapolation error for out-of-distribution actions. To mitigate this problem, in this paper, we adopt a hierarchical offline reinforcement learning framework that extracts recurrent and spatio-temporally extended primitive skills from offline data before using them for downstream task learning. Besides, we introduce an autodecoder conditional diffusion model to characterize low-level strategy decoding. Such a deep learning generative model enables the reduction of action primitives for the strategy space, which is then used to learn high-level task strategy-guided primitives via the offline learning algorithm IQL. Experimental results and ablation studies on D4RL benchmark tasks (Antmaze, Adroit and Kitchen) demonstrate that our approach achieves SOTA performance in most tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩散自解码器和技能原语的分层离线强化学习
离线强化学习力求使智能体能够有效地利用预先收集的离线数据集进行学习。这种离线设置极大地缓解了现实应用中在线强化学习算法的问题,特别是在交互受限或探索成本高昂的情况下。另一方面,学习策略相对于行为策略具有分布偏差,这导致了分布外行为的外推误差问题。为了缓解这一问题,在本文中,我们采用了一种分层的离线强化学习框架,该框架从离线数据中提取循环和时空扩展的原始技能,然后将其用于下游任务学习。此外,我们还引入了一个自解码器条件扩散模型来描述低级策略解码。这种深度学习生成模型可以减少策略空间的动作原语,然后通过离线学习算法IQL来学习高级任务策略引导的原语。D4RL基准任务(Antmaze, Adroit和Kitchen)的实验结果和烧蚀研究表明,我们的方法在大多数任务中都达到了SOTA性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1