Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-26 DOI:10.1109/LRA.2024.3523224
Shuyang Zhang;Jinhao He;Yilong Zhu;Jin Wu;Jie Yuan
{"title":"Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning","authors":"Shuyang Zhang;Jinhao He;Yilong Zhu;Jin Wu;Jie Yuan","doi":"10.1109/LRA.2024.3523224","DOIUrl":null,"url":null,"abstract":"The stability of visual odometry (VO) systems is undermined by degraded image quality, especially in environments with significant illumination changes. This study employs a deep reinforcement learning (DRL) framework to train agents for exposure control, aiming to enhance imaging performance in challenging conditions. A lightweight image simulator is developed to facilitate the training process, enabling the diversification of image exposure and sequence trajectory. This setup enables completely offline training, eliminating the need for direct interaction with camera hardware and the real environments. Different levels of reward functions are crafted to enhance the VO systems, equipping the DRL agents with varying intelligence. Extensive experiments have shown that our exposure control agents achieve superior efficiency—with an average inference duration of 1.58 ms per frame on a CPU—and respond more quickly than traditional feedback control schemes. By choosing an appropriate reward function, agents acquire an intelligent understanding of motion trends and can anticipate future changes in illumination. This predictive capability allows VO systems to deliver more stable and precise odometry results.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1609-1616"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816543/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of visual odometry (VO) systems is undermined by degraded image quality, especially in environments with significant illumination changes. This study employs a deep reinforcement learning (DRL) framework to train agents for exposure control, aiming to enhance imaging performance in challenging conditions. A lightweight image simulator is developed to facilitate the training process, enabling the diversification of image exposure and sequence trajectory. This setup enables completely offline training, eliminating the need for direct interaction with camera hardware and the real environments. Different levels of reward functions are crafted to enhance the VO systems, equipping the DRL agents with varying intelligence. Extensive experiments have shown that our exposure control agents achieve superior efficiency—with an average inference duration of 1.58 ms per frame on a CPU—and respond more quickly than traditional feedback control schemes. By choosing an appropriate reward function, agents acquire an intelligent understanding of motion trends and can anticipate future changes in illumination. This predictive capability allows VO systems to deliver more stable and precise odometry results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的有效相机曝光控制视觉里程计
视觉里程计(VO)系统的稳定性受到图像质量下降的影响,特别是在光照变化较大的环境中。本研究采用深度强化学习(DRL)框架来训练智能体进行曝光控制,旨在提高在具有挑战性条件下的成像性能。为了方便训练过程,开发了一种轻量级图像模拟器,实现了图像曝光和序列轨迹的多样化。这种设置可以完全离线训练,消除了与相机硬件和真实环境直接交互的需要。不同级别的奖励功能被精心设计以增强VO系统,使DRL代理具有不同的智能。大量的实验表明,我们的暴露控制代理实现了更高的效率——cpu上每帧平均推理持续时间为1.58 ms——并且比传统的反馈控制方案响应更快。通过选择适当的奖励函数,智能体获得对运动趋势的智能理解,并可以预测未来照明的变化。这种预测能力使VO系统能够提供更稳定和精确的里程计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Table of Contents IEEE Robotics and Automation Letters Information for Authors IEEE Robotics and Automation Society Information IEEE Robotics and Automation Society Information PneuSIC Box: Pneumatic Sequential and Independent Control Box for Scalable Demultiplexing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1