{"title":"Dual-View Desynchronization Hypergraph Learning for Dynamic Hyperedge Prediction","authors":"Zhihui Wang;Jianrui Chen;Zhongshi Shao;Zhen Wang","doi":"10.1109/TKDE.2024.3509024","DOIUrl":null,"url":null,"abstract":"Hyperedges, as extensions of pairwise edges, can characterize higher-order relations among multiple individuals. Due to the necessity of hypergraph detection in practical systems, hyperedge prediction has become a frontier problem in complex networks. However, previous hyperedge prediction models encounter three challenges: (i) failing to predict dynamic and arbitrary-order hyperedges simultaneously, (ii) confusing higher-order and lower-order features together to propagate neighborhood information, and (iii) lacking the capability to learn physical evolution laws, which lead to poor performance of the models. To tackle these challenges, we propose D\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nHP, a \n<u>D</u>\nual-view \n<u>D</u>\nesynchronization hypergraph learning for arbitrary-order \n<u>D</u>\nynamic \n<u>H</u>\nyperedge \n<u>P</u>\nrediction. Specifically, D\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nHP extracts the dynamic higher-order and lower-order features of hyperedges separately through an elastic hypergraph neural network (EHGNN) and an alternate desynchronization graph convolutional network (ADGCN) at each time snapshot. EHGNN is designed to incrementally mine the implicit higher-order relations and propagate neighborhood information. Moreover, ADGCN aims to combine GCN with desynchronization learining to learn the physical evolution of lower-order relations and alleviate the over-smoothing problem. Further, we improve the prediction performance of the model by rationally fusing the features learned from the dual views. Extensive experiments on 8 dynamic higher-order networks demonstrate that D\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nHP outperforms 14 state-of-the-art baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"597-612"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10771713/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperedges, as extensions of pairwise edges, can characterize higher-order relations among multiple individuals. Due to the necessity of hypergraph detection in practical systems, hyperedge prediction has become a frontier problem in complex networks. However, previous hyperedge prediction models encounter three challenges: (i) failing to predict dynamic and arbitrary-order hyperedges simultaneously, (ii) confusing higher-order and lower-order features together to propagate neighborhood information, and (iii) lacking the capability to learn physical evolution laws, which lead to poor performance of the models. To tackle these challenges, we propose D
$^{3}$
HP, a
D
ual-view
D
esynchronization hypergraph learning for arbitrary-order
D
ynamic
H
yperedge
P
rediction. Specifically, D
$^{3}$
HP extracts the dynamic higher-order and lower-order features of hyperedges separately through an elastic hypergraph neural network (EHGNN) and an alternate desynchronization graph convolutional network (ADGCN) at each time snapshot. EHGNN is designed to incrementally mine the implicit higher-order relations and propagate neighborhood information. Moreover, ADGCN aims to combine GCN with desynchronization learining to learn the physical evolution of lower-order relations and alleviate the over-smoothing problem. Further, we improve the prediction performance of the model by rationally fusing the features learned from the dual views. Extensive experiments on 8 dynamic higher-order networks demonstrate that D
$^{3}$
HP outperforms 14 state-of-the-art baselines.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.