Robust Precoding for Massive MIMO LEO Satellite Integrated Communication and Localization Systems

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-11-01 DOI:10.1109/LCOMM.2024.3489675
Yongxiang Zhu;Li You;Huibin Zhou;Zhenzhou Jin;Qingfu Kong;Xiqi Gao
{"title":"Robust Precoding for Massive MIMO LEO Satellite Integrated Communication and Localization Systems","authors":"Yongxiang Zhu;Li You;Huibin Zhou;Zhenzhou Jin;Qingfu Kong;Xiqi Gao","doi":"10.1109/LCOMM.2024.3489675","DOIUrl":null,"url":null,"abstract":"Low earth orbit (LEO) satellite networks combined with massive multiple-input multiple-output (MIMO) are expected to support ubiquitous integrated communication and localization (ICAL) with enhanced gains. Ensuring robust localization performance with prior angle uncertainty for the target is essential for ICAL systems. In this letter, we present a robust precoding framework to tackle this issue. We first derive the energy efficiency for communication and the worst-case Cramér-Rao bound (CRB) for localization. Subsequently, we develop a multi-objective framework aimed at simultaneously operating communication and localization for massive MIMO LEO satellite systems. Simulation results illustrate that the proposed scheme can attain satisfactory target angle estimation performance with prior angle uncertainty while guaranteeing the performance of communication.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"21-25"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10741194/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Low earth orbit (LEO) satellite networks combined with massive multiple-input multiple-output (MIMO) are expected to support ubiquitous integrated communication and localization (ICAL) with enhanced gains. Ensuring robust localization performance with prior angle uncertainty for the target is essential for ICAL systems. In this letter, we present a robust precoding framework to tackle this issue. We first derive the energy efficiency for communication and the worst-case Cramér-Rao bound (CRB) for localization. Subsequently, we develop a multi-objective framework aimed at simultaneously operating communication and localization for massive MIMO LEO satellite systems. Simulation results illustrate that the proposed scheme can attain satisfactory target angle estimation performance with prior angle uncertainty while guaranteeing the performance of communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO LEO卫星综合通信与定位系统的鲁棒预编码
结合大规模多输入多输出(MIMO)的低地球轨道(LEO)卫星网络有望以增强的增益支持无处不在的集成通信和定位(ICAL)。在目标先验角度不确定的情况下保证鲁棒的定位性能是ICAL系统的关键。在这封信中,我们提出了一个强大的预编码框架来解决这个问题。我们首先推导了通信的能量效率和定位的最坏情况cram r- rao界(CRB)。随后,我们开发了一个多目标框架,旨在同时运行大规模MIMO LEO卫星系统的通信和定位。仿真结果表明,该方案在保证通信性能的前提下,能够在具有先验角度不确定性的情况下获得满意的目标角度估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
IEEE Communications Letters Publication Information IEEE Communications Letters Publication Information Few-Shot Specific Emitter Identification Based on a Contrastive Masked Learning Framework Cooperative Spectrum Sensing Using Weighted Graph Sparsity Low-Complexity Sparse Compensation MRC Detection Algorithm for OTSM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1