Spiking Neural Belief Propagation Decoder for Short Block Length LDPC Codes

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-11-06 DOI:10.1109/LCOMM.2024.3492711
Alexander von Bank;Eike-Manuel Edelmann;Sisi Miao;Jonathan Mandelbaum;Laurent Schmalen
{"title":"Spiking Neural Belief Propagation Decoder for Short Block Length LDPC Codes","authors":"Alexander von Bank;Eike-Manuel Edelmann;Sisi Miao;Jonathan Mandelbaum;Laurent Schmalen","doi":"10.1109/LCOMM.2024.3492711","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are neural networks that enable energy-efficient signal processing due to their event-based nature. This letter proposes a novel decoding algorithm for low-density parity-check (LDPC) codes that integrates SNNs into belief propagation (BP) decoding by approximating the check node update equations using SNNs. For the (273,191) and (1023,781) finite-geometry LDPC code, the proposed decoder outperforms sum-product decoder at high signal-to-noise ratios (SNRs). The decoder achieves a similar bit error rate to normalized sum-product decoding with successive relaxation. Furthermore, the novel decoding operates without requiring knowledge of the SNR, making it robust to SNR mismatch.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"45-49"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745601","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745601/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) are neural networks that enable energy-efficient signal processing due to their event-based nature. This letter proposes a novel decoding algorithm for low-density parity-check (LDPC) codes that integrates SNNs into belief propagation (BP) decoding by approximating the check node update equations using SNNs. For the (273,191) and (1023,781) finite-geometry LDPC code, the proposed decoder outperforms sum-product decoder at high signal-to-noise ratios (SNRs). The decoder achieves a similar bit error rate to normalized sum-product decoding with successive relaxation. Furthermore, the novel decoding operates without requiring knowledge of the SNR, making it robust to SNR mismatch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短块长度LDPC码的尖峰神经信念传播解码器
脉冲神经网络(snn)是一种基于事件的神经网络,可以实现高效的信号处理。本文提出了一种新的低密度奇偶校验(LDPC)码解码算法,该算法通过使用snn近似校验节点更新方程,将snn集成到信念传播(BP)解码中。对于(273,191)和(1023,781)有限几何LDPC码,所提出的解码器在高信噪比(SNRs)下优于和积解码器。解码器的误码率与逐次松弛的归一化和积译码相似。此外,新的解码操作不需要了解信噪比,使其对信噪比不匹配具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
IEEE Communications Letters Publication Information IEEE Communications Letters Publication Information Few-Shot Specific Emitter Identification Based on a Contrastive Masked Learning Framework Cooperative Spectrum Sensing Using Weighted Graph Sparsity Low-Complexity Sparse Compensation MRC Detection Algorithm for OTSM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1