Efficient Projection-Based Algorithms for Tip Decomposition on Dynamic Bipartite Graphs

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-10-24 DOI:10.1109/TKDE.2024.3486310
Tongfeng Weng;Yumeng Liu;Mo Sha;Xinyuan Chen;Xu Zhou;Kenli Li;Kian-Lee Tan
{"title":"Efficient Projection-Based Algorithms for Tip Decomposition on Dynamic Bipartite Graphs","authors":"Tongfeng Weng;Yumeng Liu;Mo Sha;Xinyuan Chen;Xu Zhou;Kenli Li;Kian-Lee Tan","doi":"10.1109/TKDE.2024.3486310","DOIUrl":null,"url":null,"abstract":"This paper addresses the pressing need for effective k-tips decomposition in dynamic bipartite graphs, a crucial aspect of real-time applications that analyze and mine binary relationship patterns. Recognizing the dynamic nature of these graphs, our study is the first to provide a solution for k-tips decomposition in such evolving environments. We introduce a pioneering projection-based algorithm, coupled with advanced incremental maintenance strategies for edge modifications, tailored specifically for dynamic graphs. This novel approach not only fills a significant gap in the analysis of dynamic bipartite graphs but also substantially enhances the accuracy and timeliness of data-driven decisions in critical areas like public health. Our contributions set a new benchmark in the field, paving the way for more nuanced and responsive analyses in various domains reliant on dynamic data interpretation.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"626-640"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735116/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the pressing need for effective k-tips decomposition in dynamic bipartite graphs, a crucial aspect of real-time applications that analyze and mine binary relationship patterns. Recognizing the dynamic nature of these graphs, our study is the first to provide a solution for k-tips decomposition in such evolving environments. We introduce a pioneering projection-based algorithm, coupled with advanced incremental maintenance strategies for edge modifications, tailored specifically for dynamic graphs. This novel approach not only fills a significant gap in the analysis of dynamic bipartite graphs but also substantially enhances the accuracy and timeliness of data-driven decisions in critical areas like public health. Our contributions set a new benchmark in the field, paving the way for more nuanced and responsive analyses in various domains reliant on dynamic data interpretation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于投影的动态二部图尖端分解算法
本文解决了动态二部图中有效k尖分解的迫切需求,这是分析和挖掘二元关系模式的实时应用的一个关键方面。认识到这些图的动态性质,我们的研究是第一个在这种不断变化的环境中为k-tips分解提供解决方案的研究。我们引入了一种开创性的基于投影的算法,以及专门为动态图量身定制的边缘修改的高级增量维护策略。这种新颖的方法不仅填补了动态二部图分析的重大空白,而且大大提高了公共卫生等关键领域数据驱动决策的准确性和及时性。我们的贡献在该领域树立了一个新的基准,为在依赖于动态数据解释的各个领域进行更细致和响应性的分析铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1