Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-12-03 DOI:10.1007/s40843-024-3190-7
Xiang Chen  (, ), Shuai Feng  (, ), Song Xie  (, ), Yaping Miao  (, ), Biao Gao  (, ), Xuming Zhang  (, ), Li Huang  (, ), Yun Li  (, ), Paul K. Chu, Xiang Peng  (, )
{"title":"Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction","authors":"Xiang Chen \n (,&nbsp;),&nbsp;Shuai Feng \n (,&nbsp;),&nbsp;Song Xie \n (,&nbsp;),&nbsp;Yaping Miao \n (,&nbsp;),&nbsp;Biao Gao \n (,&nbsp;),&nbsp;Xuming Zhang \n (,&nbsp;),&nbsp;Li Huang \n (,&nbsp;),&nbsp;Yun Li \n (,&nbsp;),&nbsp;Paul K. Chu,&nbsp;Xiang Peng \n (,&nbsp;)","doi":"10.1007/s40843-024-3190-7","DOIUrl":null,"url":null,"abstract":"<div><p>Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo<sub>2</sub>N–MoSe<sub>2</sub> heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo<sub>2</sub>N and MoSe<sub>2</sub>, combined with the lower work function of Mo<sub>2</sub>N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm<sup>−2</sup> and 1 A cm<sup>−2</sup>, respectively, with a Tafel slope of only 96 mV dec<sup>−1</sup>. Moreover, MNS/CC maintains stable operation at 1 A cm<sup>−2</sup> for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"189 - 198"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3190-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo2N–MoSe2 heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo2N and MoSe2, combined with the lower work function of Mo2N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm−2 and 1 A cm−2, respectively, with a Tafel slope of only 96 mV dec−1. Moreover, MNS/CC maintains stable operation at 1 A cm−2 for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy Advancements in in-situ transmission electron microscopy for comprehensive analysis of heterogeneous catalysis: insights into the nanoscale dynamic processes Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1