Xuetao Xiao
(, ), Wenhao Li
(, ), Qing Zhou
(, ), Zeng Wu
(, ), Xiaochan Zuo
(, ), Rong Ma
(, ), Yifei Xu
(, ), Sichun Wang
(, ), Yan Zhao
(, )
{"title":"Enhancing the high-temperature stability of OFETs by inducing D-A stacking in P(NDI2OD-T2) films","authors":"Xuetao Xiao \n (, ), Wenhao Li \n (, ), Qing Zhou \n (, ), Zeng Wu \n (, ), Xiaochan Zuo \n (, ), Rong Ma \n (, ), Yifei Xu \n (, ), Sichun Wang \n (, ), Yan Zhao \n (, )","doi":"10.1007/s40843-024-3147-8","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature stability of organic field-effect transistors (OFETs) is critical to ensure its long-term reliable operation under various environmental conditions. The molecular packing of donor-acceptor (D-A) conjugated polymers is closely related to the electrical performance stability in OFETs. Herein, we choose poly[[<i>N</i>,<i>N</i>′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)] as a modal system to reveal the relationship between the molecular stacking and electrical stability in high-temperature environment. The results demonstrate that the films with D-A moieties in alternate stacking have better electrical thermal stability compared to normal donor-donor (D-D) stacking. The D-A stacking configuration alternates donor and acceptor units along the out-of-plane direction, while the D-D stacking involves D-D and A-A stacking separately. The structural transition from D-D to D-A is captured at a treated temperature range of 225–250°C. Owing to the tighter packing arrangement along the <i>π</i>-<i>π</i> and lamellar directions, the electron mobility of the D-A stacked films reaches up to 0.23 cm<sup>2</sup>/V·s, a 50% increase as compared to the D-D stacking films. Furthermore, the D-A stacked films indicate superior electrical performance stability with mobility retaining 100% at 250°C during high-temperature cycling tests. This result highlights that the manipulation of conjugated polymer closely stacked structures can significantly enhance the thermal stability and durability of semiconductor devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"117 - 124"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3147-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature stability of organic field-effect transistors (OFETs) is critical to ensure its long-term reliable operation under various environmental conditions. The molecular packing of donor-acceptor (D-A) conjugated polymers is closely related to the electrical performance stability in OFETs. Herein, we choose poly[[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)] as a modal system to reveal the relationship between the molecular stacking and electrical stability in high-temperature environment. The results demonstrate that the films with D-A moieties in alternate stacking have better electrical thermal stability compared to normal donor-donor (D-D) stacking. The D-A stacking configuration alternates donor and acceptor units along the out-of-plane direction, while the D-D stacking involves D-D and A-A stacking separately. The structural transition from D-D to D-A is captured at a treated temperature range of 225–250°C. Owing to the tighter packing arrangement along the π-π and lamellar directions, the electron mobility of the D-A stacked films reaches up to 0.23 cm2/V·s, a 50% increase as compared to the D-D stacking films. Furthermore, the D-A stacked films indicate superior electrical performance stability with mobility retaining 100% at 250°C during high-temperature cycling tests. This result highlights that the manipulation of conjugated polymer closely stacked structures can significantly enhance the thermal stability and durability of semiconductor devices.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.