Sushmita Gupta, Pallavi Jain, A. Mohanapriya, Vikash Tripathi
{"title":"Budget-feasible egalitarian allocation of conflicting jobs","authors":"Sushmita Gupta, Pallavi Jain, A. Mohanapriya, Vikash Tripathi","doi":"10.1007/s10458-024-09686-1","DOIUrl":null,"url":null,"abstract":"<div><p>Allocating conflicting jobs among individuals while respecting a budget constraint for each individual is an optimization problem that arises in various real-world scenarios. In this paper, we consider the situation where each individual derives some satisfaction from each job. We focus on finding a feasible allocation of conflicting jobs that maximize egalitarian cost, i.e., the satisfaction of the individual who is worst-off. To the best of our knowledge, this is the first paper to combine egalitarianism, budget-feasibility, and conflict-freeness in allocations. We provide a systematic study of the computational complexity of finding budget-feasible conflict-free egalitarian allocation and show that our problem generalizes a large number of classical optimization problems. Therefore, unsurprisingly, our problem is NP-hard even for two individuals and when there is no conflict between any jobs. We show that the problem admits algorithms when studied in the realm of approximation algorithms and parameterized algorithms with a host of natural parameters that match and in some cases improve upon the running time of known algorithms.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"39 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-024-09686-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09686-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Allocating conflicting jobs among individuals while respecting a budget constraint for each individual is an optimization problem that arises in various real-world scenarios. In this paper, we consider the situation where each individual derives some satisfaction from each job. We focus on finding a feasible allocation of conflicting jobs that maximize egalitarian cost, i.e., the satisfaction of the individual who is worst-off. To the best of our knowledge, this is the first paper to combine egalitarianism, budget-feasibility, and conflict-freeness in allocations. We provide a systematic study of the computational complexity of finding budget-feasible conflict-free egalitarian allocation and show that our problem generalizes a large number of classical optimization problems. Therefore, unsurprisingly, our problem is NP-hard even for two individuals and when there is no conflict between any jobs. We show that the problem admits algorithms when studied in the realm of approximation algorithms and parameterized algorithms with a host of natural parameters that match and in some cases improve upon the running time of known algorithms.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.