Impact of plasticity characteristics on wet-dry response of fiber reinforced clays

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2025-01-11 DOI:10.1007/s10064-024-04081-2
M. R. Abdi, M. Ebrahimi
{"title":"Impact of plasticity characteristics on wet-dry response of fiber reinforced clays","authors":"M. R. Abdi,&nbsp;M. Ebrahimi","doi":"10.1007/s10064-024-04081-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrological changes affect clays used as landfill cover, liner and embankments due to wetting-drying (W-D) cycles, adversely affecting their engineering behavior. This study assessed impact of plasticity characteristics on W-D response of unreinforced and fiber-reinforced clays. Four different mixtures of kaolinite and bentonite have been used to assess a wide array of plasticity. Compositions have been mixed with 0.1, 0.2, 0.3, 0.4, 0.6 and 0.9% polypropylene (PP) fibers 6, 12 and 18 mm in length and subjected to six W-D cycles. To analyze pictures of cracks for geometric dimension determination, Image J software together with Scanning Electron Microscopy (SEM) for visual examinations have been used. Results show that unfavorable effects of W-D cycles intensify with increase in clay plasticity and inclusion of fibers significantly reduced the detrimental effects through reduction of the area, length, width and number of cracks and helped maintaining integrity of samples even after six cycles. Additions of up to 0.3% fibers proved very effective with 12 mm being the optimum length. Fiber inclusion proved more effective in controlling cracking in high compared to low plasticity clays. Longer fibers proved more effective in low plasticity and shorter fibers with larger numbers in high plasticity clays. In high and low plasticity clays cracks formed after the 1st and the 3rd W-D cycles respectively and number of cracks grew with increase in W-D cycles. SEM showed fibers create a 3-dimensional network in clays that bind particles, resist tensile stresses and prevent rise in number and size of cracks.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04081-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrological changes affect clays used as landfill cover, liner and embankments due to wetting-drying (W-D) cycles, adversely affecting their engineering behavior. This study assessed impact of plasticity characteristics on W-D response of unreinforced and fiber-reinforced clays. Four different mixtures of kaolinite and bentonite have been used to assess a wide array of plasticity. Compositions have been mixed with 0.1, 0.2, 0.3, 0.4, 0.6 and 0.9% polypropylene (PP) fibers 6, 12 and 18 mm in length and subjected to six W-D cycles. To analyze pictures of cracks for geometric dimension determination, Image J software together with Scanning Electron Microscopy (SEM) for visual examinations have been used. Results show that unfavorable effects of W-D cycles intensify with increase in clay plasticity and inclusion of fibers significantly reduced the detrimental effects through reduction of the area, length, width and number of cracks and helped maintaining integrity of samples even after six cycles. Additions of up to 0.3% fibers proved very effective with 12 mm being the optimum length. Fiber inclusion proved more effective in controlling cracking in high compared to low plasticity clays. Longer fibers proved more effective in low plasticity and shorter fibers with larger numbers in high plasticity clays. In high and low plasticity clays cracks formed after the 1st and the 3rd W-D cycles respectively and number of cracks grew with increase in W-D cycles. SEM showed fibers create a 3-dimensional network in clays that bind particles, resist tensile stresses and prevent rise in number and size of cracks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Interfacial self-healing behavior of densely compacted Gaomiaozi bentonite: physical and hydraulic aspects Empirical models for estimating penetration rate of tunnel boring machines in rock mass Impact of plasticity characteristics on wet-dry response of fiber reinforced clays The modified Grasselli's morphology parameter and its contribution to shear strength of rock joints Improving the geotechnical properties of medium expansive clay using various gradations and percentages of glass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1