{"title":"Exploring Magnetic Characteristics and Magnetocaloric Effects of Pr0.9Sr0.1MnO3 Perovskite: Experimental and Simulations Methods","authors":"O. Rahhal, R. Masrour, M. Ellouze, E. K. Hlil","doi":"10.1007/s10948-024-06893-5","DOIUrl":null,"url":null,"abstract":"<div><p>Pr<sub>0.9</sub>Sr<sub>0.1</sub>MnO<sub>3</sub> was synthesized using the solid-solid method, and its structural and magnetic characteristics were thoroughly examined. The synthesis procedure was meticulously detailed. In the initial phase, structural analysis was conducted employing X-ray diffractometry with copper radiation, alongside magnetization measurements. Magnetic properties were investigated utilizing the BS1 magnetometer, facilitating a comprehensive understanding of the material's behavior. Subsequently, in the second phase, Monte Carlo simulations were employed to explore the magnetic characteristics and magnetocaloric effects of the Pr<sub>0.9</sub>Sr<sub>0.1</sub>MnO<sub>3</sub> perovskite. This approach provided insights into thermal magnetization, magnetic susceptibility, magnetic entropy changes, relative power cooling, and magnetic hysteresis cycles.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06893-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pr0.9Sr0.1MnO3 was synthesized using the solid-solid method, and its structural and magnetic characteristics were thoroughly examined. The synthesis procedure was meticulously detailed. In the initial phase, structural analysis was conducted employing X-ray diffractometry with copper radiation, alongside magnetization measurements. Magnetic properties were investigated utilizing the BS1 magnetometer, facilitating a comprehensive understanding of the material's behavior. Subsequently, in the second phase, Monte Carlo simulations were employed to explore the magnetic characteristics and magnetocaloric effects of the Pr0.9Sr0.1MnO3 perovskite. This approach provided insights into thermal magnetization, magnetic susceptibility, magnetic entropy changes, relative power cooling, and magnetic hysteresis cycles.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.