{"title":"A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.","authors":"Zhixuan Zhong, Lifeng Xu, Jian Jiang","doi":"10.1021/acs.jctc.4c01466","DOIUrl":null,"url":null,"abstract":"<p><p>The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction). This model can accurately and efficiently convert atomistic structures to CG mappings, reducing the need for manual intervention. By integrating bottom-up and top-down methodologies, AMOFMS allows users to freely combine these approaches or use them independently as optimization targets. Moreover, users can select and combine different optimizers to meet their specific mission. With its parallel optimizer, AMOFMS significantly accelerates the optimization process, reducing the time required to achieve optimal results. Successful applications of AMOFMS include parameter optimizations for systems such as POPC and PEO, demonstrating its robustness and effectiveness. Overall, AMOFMS provides a general and flexible framework for the automated development of high-precision CG force fields.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01466","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction). This model can accurately and efficiently convert atomistic structures to CG mappings, reducing the need for manual intervention. By integrating bottom-up and top-down methodologies, AMOFMS allows users to freely combine these approaches or use them independently as optimization targets. Moreover, users can select and combine different optimizers to meet their specific mission. With its parallel optimizer, AMOFMS significantly accelerates the optimization process, reducing the time required to achieve optimal results. Successful applications of AMOFMS include parameter optimizations for systems such as POPC and PEO, demonstrating its robustness and effectiveness. Overall, AMOFMS provides a general and flexible framework for the automated development of high-precision CG force fields.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.