d-p Hybridization Induced Open-Shell Planar Four-Membered Transition Metal Carbide Clusters with Double Möbius Aromaticity.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-09 Epub Date: 2024-12-29 DOI:10.1021/acs.jpca.4c05405
Jun Li, Yun-Ting Bu, Ao-Hua Wang, Jing Chen, Shi-Bo Cheng
{"title":"d-p Hybridization Induced Open-Shell Planar Four-Membered Transition Metal Carbide Clusters with Double Möbius Aromaticity.","authors":"Jun Li, Yun-Ting Bu, Ao-Hua Wang, Jing Chen, Shi-Bo Cheng","doi":"10.1021/acs.jpca.4c05405","DOIUrl":null,"url":null,"abstract":"<p><p>Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators. Each cluster was characterized by four delocalized π electrons and four delocalized σ electrons, forming a novel class exhibiting double Möbius aromaticity. Intriguingly, the unexpected stability of these open-shell clusters was suggested to arise from the hybridization of d-p atomic orbitals, as revealed by analysis of the composition of delocalized orbitals. Our findings highlight the significance of hybridization between the d orbitals of transition metals and the p orbitals of main group elements in the creation of dual Möbius aromatic species, which offers new avenues for the design of single-molecule magnetic inorganic materials.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 1","pages":"28-35"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05405","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators. Each cluster was characterized by four delocalized π electrons and four delocalized σ electrons, forming a novel class exhibiting double Möbius aromaticity. Intriguingly, the unexpected stability of these open-shell clusters was suggested to arise from the hybridization of d-p atomic orbitals, as revealed by analysis of the composition of delocalized orbitals. Our findings highlight the significance of hybridization between the d orbitals of transition metals and the p orbitals of main group elements in the creation of dual Möbius aromatic species, which offers new avenues for the design of single-molecule magnetic inorganic materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
A Graph Neural Network-Based Approach to XANES Data Analysis. Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks. Investigation of the Gas-Phase N2+ + CH3CN Reaction at Low Temperatures. Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides. Vibronic Coupling and Multiple Electronic States Effect in ABS and ECD Spectra: Three [7]Helicene Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1