Alison Bates, Ilsa Miller, Elizabeth M Travis, Indra D Sahu, Andrew Morris, Robert M McCarrick, Carole Dabney-Smith, Gary A Lorigan
{"title":"The Expression, Purification, Spectroscopic Characterization, and Membrane Topology Classification of KCNE4 from Recombinant <i>E. coli</i>.","authors":"Alison Bates, Ilsa Miller, Elizabeth M Travis, Indra D Sahu, Andrew Morris, Robert M McCarrick, Carole Dabney-Smith, Gary A Lorigan","doi":"10.1021/acs.jpcb.4c06665","DOIUrl":null,"url":null,"abstract":"<p><p>Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein. In this study, an alternative expression and purification protocol has been developed and validated to obtain overexpressed KCNE4 for <i>in vitro</i> studies. This protocol was validated through SDS-PAGE, CW-EPR, CW-EPR power saturation, and CD experiments. The SDS-PAGE and CD data reveal that this protocol produces relatively pure and properly folded KCNE4 in large quantities at a lower cost. The CW-EPR and EPR power saturation spectra show that KCNE4 consists of extracellular, transmembrane, and intracellular regions. Together, these techniques indicate that this alternative protocol produces structurally and dynamically native KCNE4 without the need for mammalian cell lines. This study provides guidance for characterizing the structure and dynamics of KCNE4 in a lipid bilayer environment.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 1","pages":"228-237"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06665","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein. In this study, an alternative expression and purification protocol has been developed and validated to obtain overexpressed KCNE4 for in vitro studies. This protocol was validated through SDS-PAGE, CW-EPR, CW-EPR power saturation, and CD experiments. The SDS-PAGE and CD data reveal that this protocol produces relatively pure and properly folded KCNE4 in large quantities at a lower cost. The CW-EPR and EPR power saturation spectra show that KCNE4 consists of extracellular, transmembrane, and intracellular regions. Together, these techniques indicate that this alternative protocol produces structurally and dynamically native KCNE4 without the need for mammalian cell lines. This study provides guidance for characterizing the structure and dynamics of KCNE4 in a lipid bilayer environment.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.