Up-regulation of miR-490-3p improves learning/memory disability of sevoflurane exposure by relieving neuroinflammation.

IF 2.1 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI:10.1093/toxres/tfae226
Shuang Zhai, Ying Li, Aili Guo, Wei Zhao, Changliang Mou
{"title":"Up-regulation of miR-490-3p improves learning/memory disability of sevoflurane exposure by relieving neuroinflammation.","authors":"Shuang Zhai, Ying Li, Aili Guo, Wei Zhao, Changliang Mou","doi":"10.1093/toxres/tfae226","DOIUrl":null,"url":null,"abstract":"<p><p>Our study focused on the potential mechanism of microRNA-490-3p (miR-490-3p) on learning/memory disability of rats resulting from sevoflurane (Sev). The rat model of cognitive dysfunction was established by infection with miR-490-3p mimic and Sev-exposure. Morris water maze and open field test assay were used for the assessment of cognitive deficits. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction assays were used for the measurements of neuroinflammatory cytokines and inflammatory-related genes in respective order. Bioinformatics analysis was employed for the predictive miR-490-3p-related genes. The targeted interaction was verified via dual-luciferase reporter assay. A significant decline of miR-490-3p was discovered in rats with Sev treatment, while the levels were up-regulated in rats with infection miR-490-3p pretreatment (<i>P</i> < 0.001). For Sev-induced rats, the stay time in the target quadrant was shorten, while distance travelled lengthened significantly with the control group by comparison (<i>P</i> < 0.001). Notably, an increased time of the escape latency and a decreased number of platform crossings were found in the Sev group, which alleviated by infection with miR-490-3p mimic pretreatment (<i>P</i> < 0.001). Moreover, the neuroinflammatory cytokines were elevated in the Sev group, the effects of which were recovered via miR-490-3p pretreatment (<i>P</i> < 0.001). Bioinformatics analysis predicted the miR-490-3p-associated genes. CDK1 (Cyclin-dependent kinase 1) was a potential target gene of miR-490-3p, which confirmed by dual-luciferase reporter detection. MiR-490-3p alleviated the learning and memory deficits in Sev-treated rats via the modulation of CDK1.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"14 1","pages":"tfae226"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae226","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our study focused on the potential mechanism of microRNA-490-3p (miR-490-3p) on learning/memory disability of rats resulting from sevoflurane (Sev). The rat model of cognitive dysfunction was established by infection with miR-490-3p mimic and Sev-exposure. Morris water maze and open field test assay were used for the assessment of cognitive deficits. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction assays were used for the measurements of neuroinflammatory cytokines and inflammatory-related genes in respective order. Bioinformatics analysis was employed for the predictive miR-490-3p-related genes. The targeted interaction was verified via dual-luciferase reporter assay. A significant decline of miR-490-3p was discovered in rats with Sev treatment, while the levels were up-regulated in rats with infection miR-490-3p pretreatment (P < 0.001). For Sev-induced rats, the stay time in the target quadrant was shorten, while distance travelled lengthened significantly with the control group by comparison (P < 0.001). Notably, an increased time of the escape latency and a decreased number of platform crossings were found in the Sev group, which alleviated by infection with miR-490-3p mimic pretreatment (P < 0.001). Moreover, the neuroinflammatory cytokines were elevated in the Sev group, the effects of which were recovered via miR-490-3p pretreatment (P < 0.001). Bioinformatics analysis predicted the miR-490-3p-associated genes. CDK1 (Cyclin-dependent kinase 1) was a potential target gene of miR-490-3p, which confirmed by dual-luciferase reporter detection. MiR-490-3p alleviated the learning and memory deficits in Sev-treated rats via the modulation of CDK1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上调miR-490-3p通过缓解神经炎症改善七氟醚暴露的学习/记忆障碍。
我们的研究重点是microRNA-490-3p (miR-490-3p)在七氟醚(Sev)致大鼠学习/记忆障碍中的潜在机制。通过miR-490-3p mimic感染和sev暴露建立认知功能障碍大鼠模型。采用Morris水迷宫法和开阔场地试验法评估认知缺陷。分别采用酶联免疫吸附法和实时定量聚合酶链反应法测定神经炎症细胞因子和炎症相关基因。采用生物信息学分析预测mir -490-3p相关基因。通过双荧光素酶报告基因试验验证了靶向相互作用。经Sev处理的大鼠miR-490-3p水平明显下降,而经miR-490-3p预处理的大鼠miR-490-3p水平上调(P P P P P)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Mmu-miR-664-5p contributes to high glucose-induced MPC5 podocyte injury via its target RUNX3. Microfluidic techniques in the development of PLGA nanoparticles: a tri-combination therapy for paraquat-induced cytotoxicity. Propofol induces neuronal damage in developing mice by inhibiting EGR4 transcription and regulating NPAS4 expression. Impact of D-Psicose on lipid metabolism and body weight in male rats: a systematic review and meta-analysis. Synergetic effect of taurine/taurine nanoparticles along with Sinemet® against rotenone-induced Parkinson's disease in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1