DFT-Based Polarizable Ion Models for Molten Rare-Earth Chlorides: From Lanthanum to Europium.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 DOI:10.1021/acs.jpcb.4c07931
Kateryna Goloviznina, Maria-Chiara Notarangelo, Julien Tranchida, Emeric Bourasseau, Mathieu Salanne
{"title":"DFT-Based Polarizable Ion Models for Molten Rare-Earth Chlorides: From Lanthanum to Europium.","authors":"Kateryna Goloviznina, Maria-Chiara Notarangelo, Julien Tranchida, Emeric Bourasseau, Mathieu Salanne","doi":"10.1021/acs.jpcb.4c07931","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium. The analysis of the local arrangement of chloride anions around lanthanide cations revealed broad coordination number distributions with a typical [from 6 to 9]-fold environment, the maximum of which shifts toward lower values with the increase of atomic number as well as upon dilution of the salt in sodium chloride. The neighboring lanthanide chloride complexes were found to be connected by sharing a corner or an edge of the corresponding polyhedra.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07931","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium. The analysis of the local arrangement of chloride anions around lanthanide cations revealed broad coordination number distributions with a typical [from 6 to 9]-fold environment, the maximum of which shifts toward lower values with the increase of atomic number as well as upon dilution of the salt in sodium chloride. The neighboring lanthanide chloride complexes were found to be connected by sharing a corner or an edge of the corresponding polyhedra.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. Investigating the Restricted Dynamical Environment in and Around Aβ Peptide Oligomers in Aqueous Ionic Liquid Solutions. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d-ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1