Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 DOI:10.1021/acs.jpcb.4c07402
Masaharu Kondo, Ashley M Hancock, Hayato Kuwabara, Peter G Adams, Takehisa Dewa
{"title":"Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.","authors":"Masaharu Kondo, Ashley M Hancock, Hayato Kuwabara, Peter G Adams, Takehisa Dewa","doi":"10.1021/acs.jpcb.4c07402","DOIUrl":null,"url":null,"abstract":"<p><p>The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics. In this study, we demonstrate amplified photocurrent generation from LHCII under green light illumination by coupling this protein to Texas Red (TR) chromophores that are coassembled into a lipid bilayer deposited onto electrodes. Absorption spectroscopy shows that LHCII and lipid-linked TR are successfully incorporated into lipid membranes and maintained on electrode surfaces. Photocurrent action spectra show that the increased absorption due to TR directly translates into a significant increase of photocurrent output from LHCII. However, the absolute magnitude of the photocurrent appears to be limited by the lipid bilayer acting as an insulator and the TR enhancement effect reaches a maximum due to protein, lipid or substrate-related quenching effects. Future work should be performed to optimize the use of extrinsic chromophores within novel biophotovoltaic devices.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07402","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics. In this study, we demonstrate amplified photocurrent generation from LHCII under green light illumination by coupling this protein to Texas Red (TR) chromophores that are coassembled into a lipid bilayer deposited onto electrodes. Absorption spectroscopy shows that LHCII and lipid-linked TR are successfully incorporated into lipid membranes and maintained on electrode surfaces. Photocurrent action spectra show that the increased absorption due to TR directly translates into a significant increase of photocurrent output from LHCII. However, the absolute magnitude of the photocurrent appears to be limited by the lipid bilayer acting as an insulator and the TR enhancement effect reaches a maximum due to protein, lipid or substrate-related quenching effects. Future work should be performed to optimize the use of extrinsic chromophores within novel biophotovoltaic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. Investigating the Restricted Dynamical Environment in and Around Aβ Peptide Oligomers in Aqueous Ionic Liquid Solutions. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d-ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1