Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Archiv der Pharmazie Pub Date : 2025-01-06 DOI:10.1002/ardp.202400776
Roberto Paciotti, Simone Carradori, Andrea Angeli, Ilaria D'Agostino, Marta Ferraroni, Cecilia Coletti, Claudiu T. Supuran
{"title":"Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond","authors":"Roberto Paciotti,&nbsp;Simone Carradori,&nbsp;Andrea Angeli,&nbsp;Ilaria D'Agostino,&nbsp;Marta Ferraroni,&nbsp;Cecilia Coletti,&nbsp;Claudiu T. Supuran","doi":"10.1002/ardp.202400776","DOIUrl":null,"url":null,"abstract":"<p>2,2′-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform. X-ray crystallographic studies revealed an unprecedented halogen-bond interaction between one chlorine of bithionol and the N3(ε) atom of the hCA II catalytically active histidine residue, His64. Then, quantum mechanics calculations based on the fragment molecular orbital method allowed us to estimate the strength of this bond (~2.9 kcal/mol) and highlighted the contribution of a rich hydrophobic interaction network within the isoenzyme. Interestingly, the compound inactivity against the hCA III isoform, characterized by His64Lys and Leu198Phe mutations, supported the key role played by halogen bonding in the enzyme affinity. This finding might pave the way for the development of a new class of hCA inhibitors characterized by such chemical features, with the halogen bond being a key ligand–receptor interaction.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400776","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

2,2′-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform. X-ray crystallographic studies revealed an unprecedented halogen-bond interaction between one chlorine of bithionol and the N3(ε) atom of the hCA II catalytically active histidine residue, His64. Then, quantum mechanics calculations based on the fragment molecular orbital method allowed us to estimate the strength of this bond (~2.9 kcal/mol) and highlighted the contribution of a rich hydrophobic interaction network within the isoenzyme. Interestingly, the compound inactivity against the hCA III isoform, characterized by His64Lys and Leu198Phe mutations, supported the key role played by halogen bonding in the enzyme affinity. This finding might pave the way for the development of a new class of hCA inhibitors characterized by such chemical features, with the halogen bond being a key ligand–receptor interaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前所未有的碳酸酐酶抑制机制:通过卤素键靶向组氨酸64侧链。
2,2′-硫代双(4,6-二氯苯酚),即双硫醇,是一种具有多方面生物活性的小分子。其独特的多氯酚结构使其成为探索其与MedChem感兴趣的酶(如人碳酸酐酶(hCA)金属酶)建立相互作用模式的潜力的合适候选者。在这里,双硫醇通过停流技术在一组特定的hCA上进行了测试,显示出对hCA II亚型有很好的微摩尔抑制活性。x射线晶体学研究揭示了双硫醇的一个氯与hCA II催化活性组氨酸残基His64的N3(ε)原子之间前所未有的卤素键相互作用。然后,基于片段分子轨道方法的量子力学计算使我们能够估计该键的强度(~2.9 kcal/mol),并强调了同工酶内丰富的疏水相互作用网络的贡献。有趣的是,化合物对hCA III亚型(以His64Lys和Leu198Phe突变为特征)无活性,支持了卤素键在酶亲和力中发挥的关键作用。这一发现可能为开发一类具有这种化学特征的新型hCA抑制剂铺平道路,其中卤素键是关键的配体-受体相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
期刊最新文献
Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease Synthesis and biological investigation of peptidomimetic SARS-CoV-2 main protease inhibitors bearing quinoline-based heterocycles at P3 FDA-approved drugs featuring macrocycles or medium-sized rings Synthesis of new dihydropyrimidine derivatives and investigation of their antimicrobial and DNA gyrase inhibitory activities Pyrimidine scaffold dual-target kinase inhibitors for cancer diseases: A review on design strategies, synthetic approaches, and structure–activity relationship (2018‒2023)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1