Synergistic Chloroform-Methanol Binary Solvent Mixture Is Inherently Spatially and Dynamically Heterogeneous.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 DOI:10.1021/acs.jpcb.4c07326
Ndege Simisi Clovis, Soumya Chaudhury, Pratik Sen
{"title":"Synergistic Chloroform-Methanol Binary Solvent Mixture Is Inherently Spatially and Dynamically Heterogeneous.","authors":"Ndege Simisi Clovis, Soumya Chaudhury, Pratik Sen","doi":"10.1021/acs.jpcb.4c07326","DOIUrl":null,"url":null,"abstract":"<p><p>Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior. The reason is attributed to the unique but diverse interactions present in the system. We speculated that these diverse interactions must manifest heterogeneity in such a binary solvent mixture. Using the improved methodology developed by our group, we investigate the presence of dynamic and spatial heterogeneity in the chloroform/methanol synergistic binary solvent mixture. To our delight, we found that our projection is accurate, and indeed, the chloroform/methanol binary solvent mixtures are heterogeneous. Two maxima for the synergistic behavior have been observed for the chloroform/methanol binary solvent mixture (at ∼0.45 and 0.75 mole fractions of methanol in chloroform) in the literature, where the extent of heterogeneity was also found to be the highest. The present study portrays the intriguing complexity of simple binary solvent mixtures, and the findings may provide valuable insights into solvent engineering for diverse applications like extraction/purification media, reaction media, polymer processing, nanomaterial synthesis, pollutant extraction, active ingredient delivery, biofuel production, and battery technology.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior. The reason is attributed to the unique but diverse interactions present in the system. We speculated that these diverse interactions must manifest heterogeneity in such a binary solvent mixture. Using the improved methodology developed by our group, we investigate the presence of dynamic and spatial heterogeneity in the chloroform/methanol synergistic binary solvent mixture. To our delight, we found that our projection is accurate, and indeed, the chloroform/methanol binary solvent mixtures are heterogeneous. Two maxima for the synergistic behavior have been observed for the chloroform/methanol binary solvent mixture (at ∼0.45 and 0.75 mole fractions of methanol in chloroform) in the literature, where the extent of heterogeneity was also found to be the highest. The present study portrays the intriguing complexity of simple binary solvent mixtures, and the findings may provide valuable insights into solvent engineering for diverse applications like extraction/purification media, reaction media, polymer processing, nanomaterial synthesis, pollutant extraction, active ingredient delivery, biofuel production, and battery technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. Investigating the Restricted Dynamical Environment in and Around Aβ Peptide Oligomers in Aqueous Ionic Liquid Solutions. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d-ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1