{"title":"Design and Characterization of a Micro RNA-200c Detecting Broccoli Fluorescent Light-up Aptamer.","authors":"Corinna Kersten, Stefan Zahler, Sabine Schneider","doi":"10.1002/cbic.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400772"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400772","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).