Muhammad Ehsan, Lubna Ghani, Baoliang Lan, Satoshi Katsube, Ida H Poulsen, Xiang Zhang, Muhammad Arslan, Bernadette Byrne, Claus J Loland, Lan Guan, Xiangyu Liu, Pil Seok Chae
{"title":"Unsymmetric Triazine-Based Triglucoside Detergents for Membrane Protein Stability.","authors":"Muhammad Ehsan, Lubna Ghani, Baoliang Lan, Satoshi Katsube, Ida H Poulsen, Xiang Zhang, Muhammad Arslan, Bernadette Byrne, Claus J Loland, Lan Guan, Xiangyu Liu, Pil Seok Chae","doi":"10.1002/cbic.202400958","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane proteins play a crucial role in a variety of biological processes and are key targets for pharmaceutical development. Structural studies of membrane proteins provide molecular insights into the mechanisms of these processes and are essential for effective drug discovery. Historically, these studies have relied on solubilization of the target protein using detergents, but conventional detergents often fail to maintain the stability of challenging membrane proteins. To address this issue, there is a need to develop novel detergents with enhanced protein stabilization properties. In this study, we synthesized unsymmetric variants of recently reported tris(hydroxymethyl)aminomethane(TRIS)-linker-bearing triazine-based triglucosides (TTGs) by incorporating two different alkyl chains (long and short) into the detergent structure. When tested with model membrane proteins, including a G protein-coupled receptor, TTG-8,12 demonstrated superior efficacy in stabilizing membrane proteins compared to the original TTGs and the gold standard detergents DDM/LMNG. These results suggest that detergent unsymmetry is an important concept for improving detergent performance and unsymmetric detergents such as TTG-8,12 hold significant potential for advancing membrane protein structural studies.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400958"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400958","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane proteins play a crucial role in a variety of biological processes and are key targets for pharmaceutical development. Structural studies of membrane proteins provide molecular insights into the mechanisms of these processes and are essential for effective drug discovery. Historically, these studies have relied on solubilization of the target protein using detergents, but conventional detergents often fail to maintain the stability of challenging membrane proteins. To address this issue, there is a need to develop novel detergents with enhanced protein stabilization properties. In this study, we synthesized unsymmetric variants of recently reported tris(hydroxymethyl)aminomethane(TRIS)-linker-bearing triazine-based triglucosides (TTGs) by incorporating two different alkyl chains (long and short) into the detergent structure. When tested with model membrane proteins, including a G protein-coupled receptor, TTG-8,12 demonstrated superior efficacy in stabilizing membrane proteins compared to the original TTGs and the gold standard detergents DDM/LMNG. These results suggest that detergent unsymmetry is an important concept for improving detergent performance and unsymmetric detergents such as TTG-8,12 hold significant potential for advancing membrane protein structural studies.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).