HCG18 Promotes Cell Proliferation and Stemness in Cholangiocarcinoma via the miR-194-5p/KRT18/MAPK Signaling.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2025-01-08 DOI:10.1007/s10528-025-11020-7
Guodong Tian, Lu Zuo, Jie Li, Xin Zheng, Feng Gao
{"title":"HCG18 Promotes Cell Proliferation and Stemness in Cholangiocarcinoma via the miR-194-5p/KRT18/MAPK Signaling.","authors":"Guodong Tian, Lu Zuo, Jie Li, Xin Zheng, Feng Gao","doi":"10.1007/s10528-025-11020-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating evidence has demonstrated that Keratin18 (KRT18) functions as a pivotal gene in the progression of various cancers. However, its role in cholangiocarcinoma (CCA) remains unexplored. Our study elucidated the biological functions and underlying mechanisms of KRT18 in CCA. Bioinformatic databases were used to identify potential miRNAs and lncRNAs. The cellular localization of KRT18 and lncRNA HCG18 was examined through subcellular fractionation. Expression levels of genes were assessed by qRT-PCR, while protein levels were measured via western blot. Cell viability was analyzed using CCK-8 assays. Colony formation and EdU assays assessed cell proliferation, and sphere formation assays evaluated stem cell properties. The interactions between HCG18, miR-194-5p, and KRT18 were explored through RNA immunoprecipitation, RNA pulldown, and luciferase reporter assays. A xenograft tumor model was conducted to evaluate the in vivo function. In CCA tissues and cell lines, KRT18 expression was elevated. Functionally, silencing KRT18 reduced cell proliferation and stemness and inhibited cell cycle. Mechanistically, miR-194-5p directly targeted KRT18. HCG18, which was upregulated in CCA, interacted with miR-194-5p. Overexpression of KRT18 negated the effects of HCG18 suppression on CCA cell proliferation and stemness. Activation of MAPK signaling reversed the antitumor effects of KRT18 downregulation on CCA in vitro. Moreover, HCG18 was found to activate MAPK signaling through the miR-194-5p/KRT18 pathway. The in vivo assay demonstrated that HCG18 knockdown inhibited tumor growth by the miR-194-5p/KRT18/MAPK axis. HCG18 can promote cell proliferation and stem cell characteristics in CCA through the miR-194-5p/KRT18/MAPK signaling.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11020-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accumulating evidence has demonstrated that Keratin18 (KRT18) functions as a pivotal gene in the progression of various cancers. However, its role in cholangiocarcinoma (CCA) remains unexplored. Our study elucidated the biological functions and underlying mechanisms of KRT18 in CCA. Bioinformatic databases were used to identify potential miRNAs and lncRNAs. The cellular localization of KRT18 and lncRNA HCG18 was examined through subcellular fractionation. Expression levels of genes were assessed by qRT-PCR, while protein levels were measured via western blot. Cell viability was analyzed using CCK-8 assays. Colony formation and EdU assays assessed cell proliferation, and sphere formation assays evaluated stem cell properties. The interactions between HCG18, miR-194-5p, and KRT18 were explored through RNA immunoprecipitation, RNA pulldown, and luciferase reporter assays. A xenograft tumor model was conducted to evaluate the in vivo function. In CCA tissues and cell lines, KRT18 expression was elevated. Functionally, silencing KRT18 reduced cell proliferation and stemness and inhibited cell cycle. Mechanistically, miR-194-5p directly targeted KRT18. HCG18, which was upregulated in CCA, interacted with miR-194-5p. Overexpression of KRT18 negated the effects of HCG18 suppression on CCA cell proliferation and stemness. Activation of MAPK signaling reversed the antitumor effects of KRT18 downregulation on CCA in vitro. Moreover, HCG18 was found to activate MAPK signaling through the miR-194-5p/KRT18 pathway. The in vivo assay demonstrated that HCG18 knockdown inhibited tumor growth by the miR-194-5p/KRT18/MAPK axis. HCG18 can promote cell proliferation and stem cell characteristics in CCA through the miR-194-5p/KRT18/MAPK signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HCG18通过miR-194-5p/KRT18/MAPK信号传导促进胆管癌细胞增殖和干细胞。
越来越多的证据表明,Keratin18 (KRT18)在各种癌症的进展中起关键作用。然而,其在胆管癌(CCA)中的作用仍未被探索。我们的研究阐明了KRT18在CCA中的生物学功能和潜在机制。利用生物信息学数据库鉴定潜在的mirna和lncrna。通过亚细胞分离检测KRT18和lncRNA HCG18的细胞定位。qRT-PCR检测基因表达水平,western blot检测蛋白表达水平。采用CCK-8检测细胞活力。菌落形成和EdU检测评估细胞增殖,球体形成检测评估干细胞特性。通过RNA免疫沉淀、RNA下拉和荧光素酶报告基因检测来探索HCG18、miR-194-5p和KRT18之间的相互作用。采用异种移植肿瘤模型评价其体内功能。在CCA组织和细胞系中,KRT18表达升高。功能上,沉默KRT18可降低细胞增殖和干性,抑制细胞周期。在机制上,miR-194-5p直接靶向KRT18。在CCA中上调的HCG18与miR-194-5p相互作用。KRT18的过表达否定了HCG18抑制对CCA细胞增殖和干性的影响。MAPK信号的激活逆转了KRT18下调对体外CCA的抗肿瘤作用。此外,HCG18被发现通过miR-194-5p/KRT18途径激活MAPK信号。体内实验表明,HCG18敲低通过miR-194-5p/KRT18/MAPK轴抑制肿瘤生长。HCG18可通过miR-194-5p/KRT18/MAPK信号通路促进CCA细胞增殖和干细胞特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation. Oxidative Stress-Related KEAP1 and NRF2 Genes Contributed to the Risk of Epithelial Ovarian Cancer. Amino Acid Metabolism-Related Gene Kynureninase (KYNU) as a Prognostic Predictor and Regulator of Diffuse Large B-Cell Lymphoma. Exploring miR-34a, miR-449, and ADAM2/ADAM7 Expressions as Potential Biomarkers in Male Infertility: A Combined In Silico and Experimental Approach. Association Between ERBB2 and ERBB3 Polymorphisms and Dyslipidaemia and Serum Lipid Levels in a Chinese Population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1