{"title":"Multifaceted roles of UFMylation in health and disease.","authors":"Ru-Na Wang, Lin Li, Jun Zhou, Jie Ran","doi":"10.1038/s41401-024-01456-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01456-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.