{"title":"Disentangling the role of selenium in antagonizing the toxicity of arsenic and cadmium","authors":"Iwona Zwolak","doi":"10.1007/s00204-024-03918-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"513 - 540"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-024-03918-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.