Gaussian processes for time series with lead-lag effects with applications to biology data.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujae156
Wancen Mu, Jiawen Chen, Eric S Davis, Kathleen Reed, Douglas Phanstiel, Michael I Love, Didong Li
{"title":"Gaussian processes for time series with lead-lag effects with applications to biology data.","authors":"Wancen Mu, Jiawen Chen, Eric S Davis, Kathleen Reed, Douglas Phanstiel, Michael I Love, Didong Li","doi":"10.1093/biomtc/ujae156","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating the relationship, particularly the lead-lag effect, between time series is a common question across various disciplines, especially when uncovering biological processes. However, analyzing time series presents several challenges. Firstly, due to technical reasons, the time points at which observations are made are not at uniform intervals. Secondly, some lead-lag effects are transient, necessitating time-lag estimation based on a limited number of time points. Thirdly, external factors also impact these time series, requiring a similarity metric to assess the lead-lag relationship. To counter these issues, we introduce a model grounded in the Gaussian process, affording the flexibility to estimate lead-lag effects for irregular time series. In addition, our method outputs dissimilarity scores, thereby broadening its applications to include tasks such as ranking or clustering multiple pairwise time series when considering their strength of lead-lag effects with external factors. Crucially, we offer a series of theoretical proofs to substantiate the validity of our proposed kernels and the identifiability of kernel parameters. Our model demonstrates advances in various simulations and real-world applications, particularly in the study of dynamic chromatin interactions, compared to other leading methods.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the relationship, particularly the lead-lag effect, between time series is a common question across various disciplines, especially when uncovering biological processes. However, analyzing time series presents several challenges. Firstly, due to technical reasons, the time points at which observations are made are not at uniform intervals. Secondly, some lead-lag effects are transient, necessitating time-lag estimation based on a limited number of time points. Thirdly, external factors also impact these time series, requiring a similarity metric to assess the lead-lag relationship. To counter these issues, we introduce a model grounded in the Gaussian process, affording the flexibility to estimate lead-lag effects for irregular time series. In addition, our method outputs dissimilarity scores, thereby broadening its applications to include tasks such as ranking or clustering multiple pairwise time series when considering their strength of lead-lag effects with external factors. Crucially, we offer a series of theoretical proofs to substantiate the validity of our proposed kernels and the identifiability of kernel parameters. Our model demonstrates advances in various simulations and real-world applications, particularly in the study of dynamic chromatin interactions, compared to other leading methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超前滞后效应时间序列的高斯过程及其在生物数据中的应用。
研究时间序列之间的关系,特别是前导滞后效应,是各个学科的共同问题,特别是在揭示生物过程时。然而,分析时间序列会带来一些挑战。首先,由于技术原因,进行观测的时间点间隔不均匀。其次,一些超前滞后效应是短暂的,需要基于有限的时间点进行时滞估计。第三,外部因素也会影响这些时间序列,需要一个相似性度量来评估前滞后关系。为了解决这些问题,我们引入了一个基于高斯过程的模型,为估计不规则时间序列的超前滞后效应提供了灵活性。此外,我们的方法输出不相似分数,从而扩大其应用范围,包括在考虑其与外部因素的领先滞后效应强度时对多个成对时间序列进行排序或聚类等任务。至关重要的是,我们提供了一系列的理论证明来证实我们提出的核的有效性和核参数的可识别性。与其他领先的方法相比,我们的模型展示了各种模拟和现实世界应用的进步,特别是在动态染色质相互作用的研究方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Gaussian processes for time series with lead-lag effects with applications to biology data. Weighted Q-learning for optimal dynamic treatment regimes with nonignorable missing covariates. Causal inference with cross-temporal design. Distributed model building and recursive integration for big spatial data modeling. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1