A network analysis of depression and anxiety symptoms among Chinese elderly living alone: based on the 2017-2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS).

IF 3.4 2区 医学 Q2 PSYCHIATRY BMC Psychiatry Pub Date : 2025-01-08 DOI:10.1186/s12888-024-06443-2
Ze Chang, Yunfan Zhang, Xiao Liang, Yunmeng Chen, Chunyan Guo, Xiansu Chi, Liuding Wang, Xie Wang, Hong Chen, Zixuan Zhang, Longtao Liu, Lina Miao, Yunling Zhang
{"title":"A network analysis of depression and anxiety symptoms among Chinese elderly living alone: based on the 2017-2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS).","authors":"Ze Chang, Yunfan Zhang, Xiao Liang, Yunmeng Chen, Chunyan Guo, Xiansu Chi, Liuding Wang, Xie Wang, Hong Chen, Zixuan Zhang, Longtao Liu, Lina Miao, Yunling Zhang","doi":"10.1186/s12888-024-06443-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Elderly individuals living alone represent a vulnerable group with limited family support, making them more susceptible to mental health issues such as depression and anxiety. This study aims to construct a network model of depression and anxiety symptoms among older adults living alone, exploring the correlations and centrality of different symptoms. The goal is to identify core and bridging symptoms to inform clinical interventions.</p><p><strong>Methods: </strong>Using data from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS), this study constructed a network model of depression and anxiety symptoms among elderly individuals living alone. Depression and anxiety symptoms were assessed using the Center for Epidemiologic Studies Depression Scale-10 (CESD-10) and the Generalized Anxiety Disorder Scale-7 (GAD-7), respectively. A Gaussian Graphical Model (GGM) was employed to build the symptom network, and the Fruchterman-Reingold algorithm was used for visualization, with the thickness and color of the edges representing partial correlations between symptoms. To minimize spurious correlations, the Least Absolute Shrinkage and Selection Operator (LASSO) method was applied for regularization, and the optimal regularization parameters were selected using the Extended Bayesian Information Criterion (EBIC). We further calculated Expected Influence (EI) and Bridge Expected Influence (Bridge EI) to evaluate the importance of symptoms. Non-parametric bootstrap methods were used to assess the stability and accuracy of the network.</p><p><strong>Results: </strong>The Network centrality analysis revealed that GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing) exhibited the highest strength centrality (1.128 and 1.102, respectively), indicating their significant direct associations with other symptoms and their roles as core nodes in the anxiety symptom network. Other highly central nodes, such as GAD1 (Nervousness or anxiety) and GAD3 (Generalized worry), further underscore the dominance of anxiety symptoms in the overall network. Betweenness centrality results highlighted GAD1 (Nervousness or anxiety) and GAD2 (Uncontrollable worry) as critical bridge nodes facilitating information flow between different symptoms, while CESD3 (Feeling depressed) demonstrated a bridging role across modules. Weighted analyses further confirmed the central importance of GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing). Additionally, the analysis showed gender differences in the depression-anxiety networks of elderly individuals living alone.</p><p><strong>Conclusion: </strong>This study, through network analysis, uncovered the complex relationships between depression and anxiety symptoms among elderly individuals living alone, identifying GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing) as core symptoms. These findings provide essential insights for targeted interventions. Future research should explore intervention strategies for these symptoms to improve the mental health of elderly individuals living alone.</p>","PeriodicalId":9029,"journal":{"name":"BMC Psychiatry","volume":"25 1","pages":"28"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12888-024-06443-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Elderly individuals living alone represent a vulnerable group with limited family support, making them more susceptible to mental health issues such as depression and anxiety. This study aims to construct a network model of depression and anxiety symptoms among older adults living alone, exploring the correlations and centrality of different symptoms. The goal is to identify core and bridging symptoms to inform clinical interventions.

Methods: Using data from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS), this study constructed a network model of depression and anxiety symptoms among elderly individuals living alone. Depression and anxiety symptoms were assessed using the Center for Epidemiologic Studies Depression Scale-10 (CESD-10) and the Generalized Anxiety Disorder Scale-7 (GAD-7), respectively. A Gaussian Graphical Model (GGM) was employed to build the symptom network, and the Fruchterman-Reingold algorithm was used for visualization, with the thickness and color of the edges representing partial correlations between symptoms. To minimize spurious correlations, the Least Absolute Shrinkage and Selection Operator (LASSO) method was applied for regularization, and the optimal regularization parameters were selected using the Extended Bayesian Information Criterion (EBIC). We further calculated Expected Influence (EI) and Bridge Expected Influence (Bridge EI) to evaluate the importance of symptoms. Non-parametric bootstrap methods were used to assess the stability and accuracy of the network.

Results: The Network centrality analysis revealed that GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing) exhibited the highest strength centrality (1.128 and 1.102, respectively), indicating their significant direct associations with other symptoms and their roles as core nodes in the anxiety symptom network. Other highly central nodes, such as GAD1 (Nervousness or anxiety) and GAD3 (Generalized worry), further underscore the dominance of anxiety symptoms in the overall network. Betweenness centrality results highlighted GAD1 (Nervousness or anxiety) and GAD2 (Uncontrollable worry) as critical bridge nodes facilitating information flow between different symptoms, while CESD3 (Feeling depressed) demonstrated a bridging role across modules. Weighted analyses further confirmed the central importance of GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing). Additionally, the analysis showed gender differences in the depression-anxiety networks of elderly individuals living alone.

Conclusion: This study, through network analysis, uncovered the complex relationships between depression and anxiety symptoms among elderly individuals living alone, identifying GAD2 (Uncontrollable worry) and GAD4 (Trouble relaxing) as core symptoms. These findings provide essential insights for targeted interventions. Future research should explore intervention strategies for these symptoms to improve the mental health of elderly individuals living alone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Psychiatry
BMC Psychiatry 医学-精神病学
CiteScore
5.90
自引率
4.50%
发文量
716
审稿时长
3-6 weeks
期刊介绍: BMC Psychiatry is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of psychiatric disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Correction: Feasibility of screening for cognitive impairment among older persons and referral by community health workers in Wakiso district, Uganda. Social cognition in bipolar I and II disorders: an updated systematic review and meta-analysis. Autism spectrum disorder, social anxiety and obsessive-compulsive disorders: beyond the comorbidity. Psychometric properties of the Swedish version of the Patient Health Questionnaire-9: an investigation using Rasch analysis and confirmatory factor analysis. The motives for non-suicidal self-injury among adolescents with psychiatric disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1