Traditional versus modern approaches to screening mammography: a comparison of computer-assisted detection for synthetic 2D mammography versus an artificial intelligence algorithm for digital breast tomosynthesis.
Manisha Bahl, Ashwini Kshirsagar, Scott Pohlman, Constance D Lehman
{"title":"Traditional versus modern approaches to screening mammography: a comparison of computer-assisted detection for synthetic 2D mammography versus an artificial intelligence algorithm for digital breast tomosynthesis.","authors":"Manisha Bahl, Ashwini Kshirsagar, Scott Pohlman, Constance D Lehman","doi":"10.1007/s10549-024-07589-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to compare the performance of a traditional machine learning CADe algorithm for synthetic 2D mammography to a deep learning-based AI algorithm for DBT on the same mammograms.</p><p><strong>Methods: </strong>Mammographic examinations from 764 patients (mean age 58 years ± 11) with 106 biopsy-proven cancers and 658 cancer-negative cases were analyzed by a CADe algorithm (ImageChecker v10.0, Hologic, Inc.) and an AI algorithm (Genius AI Detection v2.0, Hologic, Inc.). Synthetic 2D images were used for CADe analysis, and DBT images were used for AI analysis. For each algorithm, an overall case score was defined as the highest score of all lesion marks, which was used to determine the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>The overall AUC was higher for 3D AI than 2D CADe (0.873 versus 0.693, P < 0.001). Lesion-specific sensitivity of 3D AI was higher than 2D CADe (94.3 versus 72.6%, P = 0.002). Specificity of 3D AI was higher than 2D CADe (54.3 versus 16.7%, P < 0.001), and the rate of false marks on non-cancer cases was lower for 3D AI than 2D CADe (0.91 versus 3.24 per exam, P < 0.001).</p><p><strong>Conclusion: </strong>A deep learning-based AI algorithm applied to DBT images significantly outperformed a traditional machine learning CADe algorithm applied to synthetic 2D mammographic images, with regard to AUC, sensitivity, and specificity.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-024-07589-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to compare the performance of a traditional machine learning CADe algorithm for synthetic 2D mammography to a deep learning-based AI algorithm for DBT on the same mammograms.
Methods: Mammographic examinations from 764 patients (mean age 58 years ± 11) with 106 biopsy-proven cancers and 658 cancer-negative cases were analyzed by a CADe algorithm (ImageChecker v10.0, Hologic, Inc.) and an AI algorithm (Genius AI Detection v2.0, Hologic, Inc.). Synthetic 2D images were used for CADe analysis, and DBT images were used for AI analysis. For each algorithm, an overall case score was defined as the highest score of all lesion marks, which was used to determine the area under the receiver operating characteristic curve (AUC).
Results: The overall AUC was higher for 3D AI than 2D CADe (0.873 versus 0.693, P < 0.001). Lesion-specific sensitivity of 3D AI was higher than 2D CADe (94.3 versus 72.6%, P = 0.002). Specificity of 3D AI was higher than 2D CADe (54.3 versus 16.7%, P < 0.001), and the rate of false marks on non-cancer cases was lower for 3D AI than 2D CADe (0.91 versus 3.24 per exam, P < 0.001).
Conclusion: A deep learning-based AI algorithm applied to DBT images significantly outperformed a traditional machine learning CADe algorithm applied to synthetic 2D mammographic images, with regard to AUC, sensitivity, and specificity.
期刊介绍:
Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.