Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy.

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING Cell Transplantation Pub Date : 2025-01-01 DOI:10.1177/09636897241311019
Ning Wang, Feifei Ma, Huijuan Song, Ningning He, Huanteng Zhang, Jianguo Li, Qiang Liu, Chang Xu
{"title":"Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy.","authors":"Ning Wang, Feifei Ma, Huijuan Song, Ningning He, Huanteng Zhang, Jianguo Li, Qiang Liu, Chang Xu","doi":"10.1177/09636897241311019","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage. There is an urgent need for developing medical countermeasures against radiation injury for tissue repair. Tissue repair involves the regeneration, proliferation, differentiation, and migration of tissue cells; imbalance of local tissue homeostasis, progressive chronic inflammation; decreased cell activity and stem cell function; and wound healing. Although many clinical treatments are currently available for tissue repair, they are expensive. The long recovery time and some unavoidable complications such as cell damage and the inflammatory reaction caused by radiotherapy have led to unsatisfactory results. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have similar tissue repair functions as MSCs. In tissue damage, EVs can be used as an alternative to stem cell therapy, thereby avoiding related complications such as immunological rejection. EVs play a major role in regulating tissue damage, anti-inflammation, pro-proliferation, and immune response, thus providing a diversified and efficient solution for the repair of disease- and radiotherapy-induced tissue damage. This article reviews the research progress of mesenchymal stem cell-derived EVs in promoting the repair of tissue including heart, lung, liver, intestine, skin, blood system, central nervous system, and tissue damage caused by radiotherapy, thereby aiming to offer new directions and ideas for the radiotherapy and regenerative applications.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"34 ","pages":"9636897241311019"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241311019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage. There is an urgent need for developing medical countermeasures against radiation injury for tissue repair. Tissue repair involves the regeneration, proliferation, differentiation, and migration of tissue cells; imbalance of local tissue homeostasis, progressive chronic inflammation; decreased cell activity and stem cell function; and wound healing. Although many clinical treatments are currently available for tissue repair, they are expensive. The long recovery time and some unavoidable complications such as cell damage and the inflammatory reaction caused by radiotherapy have led to unsatisfactory results. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have similar tissue repair functions as MSCs. In tissue damage, EVs can be used as an alternative to stem cell therapy, thereby avoiding related complications such as immunological rejection. EVs play a major role in regulating tissue damage, anti-inflammation, pro-proliferation, and immune response, thus providing a diversified and efficient solution for the repair of disease- and radiotherapy-induced tissue damage. This article reviews the research progress of mesenchymal stem cell-derived EVs in promoting the repair of tissue including heart, lung, liver, intestine, skin, blood system, central nervous system, and tissue damage caused by radiotherapy, thereby aiming to offer new directions and ideas for the radiotherapy and regenerative applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质干细胞衍生的细胞外囊泡在再生和放疗中的应用。
组织修复是临床治疗中极为重要的一环。在疾病治疗过程中,手术、化疗和放疗会造成组织损伤。另一方面,意外或治疗性暴露于高剂量辐射的正常组织会造成严重的组织损伤。研究辐射损伤的医学对策是组织修复的迫切需要。组织修复包括组织细胞的再生、增殖、分化和迁移;局部组织稳态失衡,进行性慢性炎症;细胞活性和干细胞功能下降;还有伤口愈合。尽管目前有许多用于组织修复的临床治疗方法,但它们都很昂贵。恢复时间长,放疗引起的细胞损伤、炎症反应等不可避免的并发症导致治疗效果不理想。来源于间充质干细胞(MSCs)的细胞外囊泡(EVs)具有与间充质干细胞相似的组织修复功能。在组织损伤中,EVs可以作为干细胞治疗的替代方法,从而避免了免疫排斥等相关并发症。EVs在调节组织损伤、抗炎、促增殖和免疫应答等方面发挥重要作用,为疾病和放疗诱导的组织损伤修复提供了多样化、高效的解决方案。本文综述了间充质干细胞衍生的ev在促进心脏、肺、肝、肠、皮肤、血液系统、中枢神经系统等组织的修复以及放疗引起的组织损伤等方面的研究进展,旨在为其放射治疗和再生应用提供新的方向和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
期刊最新文献
Impact of Tacrolimus, Sirolimus, Age, and Body Mass Index on the Occurrence of Skin Cancer and Islet Dysfunction After Transplantation. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy. Can Islet Transplantation Possibly Reduce Mortality in Type 1 Diabetes. Tumor Necrosis Factor Receptor 1 Is Required for Human Umbilical Cord-Derived Mesenchymal Stem Cell-Mediated Rheumatoid Arthritis Therapy. Perspectives and Limitations of Mesenchymal Stem Cell-Based Therapy for Corneal Injuries and Retinal Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1