Raven M Osborn, Christopher S Anderson, Justin R Leach, Chin Yi Chu, Stephen Dewhurst, Thomas J Mariani, Juilee Thakar
{"title":"Single-cell analysis of lung epithelial cells reveals age and cell population-specific responses to SARS-CoV-2 infection in ciliated cells.","authors":"Raven M Osborn, Christopher S Anderson, Justin R Leach, Chin Yi Chu, Stephen Dewhurst, Thomas J Mariani, Juilee Thakar","doi":"10.1093/cei/uxae118","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.</p><p><strong>Method: </strong>Therefore, we investigated the transcriptome of different cell populations of the airway epithelium using pediatric and adult lung tissue samples from the LungMAP Human Tissue Core Biorepository. Specifically, lung lobes were digested and cultured into a biomimetic model of the airway epithelium on an air-liquid interface. Cells were then infected with SARS-CoV-2 and subjected to single-cell RNA sequencing. Transcriptional profiling and differential expression analysis were carried out using Seurat.</p><p><strong>Results: </strong>The clustering analysis identified several cell populations: club cells, proliferating epithelial cells, multiciliated precursor cells, ionocytes, and two biologically distinct clusters of ciliated cells (FOXJ1high and FOXJ1low). Interestingly, the two ciliated cell clusters showed different infection rates and enrichment of processes involved in ciliary biogenesis and function; we observed a cell-type-specific suppression of innate immunity in infected cells from the FOXJ1low subset. We also identified a significant number of genes that were differentially expressed in lung cells derived from children as compared to adults, suggesting the differential pathogenesis of SARS-CoV-2 infection in children versus adults.</p><p><strong>Conclusion: </strong>We discuss how this work can be used to identify drug targets to modulate molecular signaling cascades that mediate an innate immune response and begin to understand differences in COVID-19 outcomes for pediatric vs. adult populations.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxae118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
Method: Therefore, we investigated the transcriptome of different cell populations of the airway epithelium using pediatric and adult lung tissue samples from the LungMAP Human Tissue Core Biorepository. Specifically, lung lobes were digested and cultured into a biomimetic model of the airway epithelium on an air-liquid interface. Cells were then infected with SARS-CoV-2 and subjected to single-cell RNA sequencing. Transcriptional profiling and differential expression analysis were carried out using Seurat.
Results: The clustering analysis identified several cell populations: club cells, proliferating epithelial cells, multiciliated precursor cells, ionocytes, and two biologically distinct clusters of ciliated cells (FOXJ1high and FOXJ1low). Interestingly, the two ciliated cell clusters showed different infection rates and enrichment of processes involved in ciliary biogenesis and function; we observed a cell-type-specific suppression of innate immunity in infected cells from the FOXJ1low subset. We also identified a significant number of genes that were differentially expressed in lung cells derived from children as compared to adults, suggesting the differential pathogenesis of SARS-CoV-2 infection in children versus adults.
Conclusion: We discuss how this work can be used to identify drug targets to modulate molecular signaling cascades that mediate an innate immune response and begin to understand differences in COVID-19 outcomes for pediatric vs. adult populations.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.