Hong-Jian Chen, Ye-Feng Chen, Ji-Fan Chen, Kai Qian, Yang-Yang Zhu, Lei Fang, Ying Zhang, Tao Yang, Guo-Wei Wang, Pin-Tong Huang
{"title":"Kuanxiong Aerosol Attenuates Ischemic Stroke Injury via Modulation of the TRPV1 Channel.","authors":"Hong-Jian Chen, Ye-Feng Chen, Ji-Fan Chen, Kai Qian, Yang-Yang Zhu, Lei Fang, Ying Zhang, Tao Yang, Guo-Wei Wang, Pin-Tong Huang","doi":"10.1007/s11655-024-3669-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.</p><p><strong>Methods: </strong>In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15). Mice in KXA and vehicle groups received 69 mg KXA and vehicle for 1 day, respectively. To evaluate long-term outcome, 35 mice were randomly divided into sham group (n=5), vehicle group (n=15), and KXA group (n=15). Mice in KXA and vehicle groups received 69 mg KXA and vehicle for 7 days, respectively. Pathological changes in the brain were observed by 2,3,5-triphenyltetrazolium chloride or Nissl stainings, and behavioral assessments, including the Modified Neurologic Severity Score, Bederson score, rotarod test, and adhesive removal test were conducted. The penetration ability of KXA and KX (KXA without propellants) through the blood-brain barrier was assessed both in vitro using a transwell model and in vivo. Furthermore, in vitro effects of KX (5, 10, and 20 µL/L) on oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced injury, transient receptor potential vanilloid type 1 (TRPV1) modulation, calcium influx, and mitochondrial function were explored through Western blot, CCK-8 assay, JC-1 staining, calcium imaging, adenosine triphosphate (ATP) and antioxidant measurements.</p><p><strong>Results: </strong>In in vivo experiments, KXA reduced brain infarct volume and neuron loss in t-MCAO mice. Behavioral assessments showed marked improvement in the neurological deficit of t-MCAO mice with KXA treatment (P<0.05 or P<0.01). Additionally, in vitro findings indicated that KX ameliorated OGD/R-induced injury through TRPV1 channel modulation. KX increased cell viability in OGD/R-treated SH-SY5Y cells and prevented OGD/R-induced calcium overload by downregulating TRPV1 expression and constraining calcium influx through TRPV1 (P<0.05 or P<0.01). Furthermore, KXA maintained the membrane potential and function of mitochondria in OGD/R-treated SH-SY5Y cells.</p><p><strong>Conclusions: </strong>KXA could attenuate ischemic stroke injury through TRPV1 channel modulation, indicating its potential as a promising therapeutic option for stroke in clinical practice.</p>","PeriodicalId":10005,"journal":{"name":"Chinese Journal of Integrative Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Integrative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11655-024-3669-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.
Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15). Mice in KXA and vehicle groups received 69 mg KXA and vehicle for 1 day, respectively. To evaluate long-term outcome, 35 mice were randomly divided into sham group (n=5), vehicle group (n=15), and KXA group (n=15). Mice in KXA and vehicle groups received 69 mg KXA and vehicle for 7 days, respectively. Pathological changes in the brain were observed by 2,3,5-triphenyltetrazolium chloride or Nissl stainings, and behavioral assessments, including the Modified Neurologic Severity Score, Bederson score, rotarod test, and adhesive removal test were conducted. The penetration ability of KXA and KX (KXA without propellants) through the blood-brain barrier was assessed both in vitro using a transwell model and in vivo. Furthermore, in vitro effects of KX (5, 10, and 20 µL/L) on oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced injury, transient receptor potential vanilloid type 1 (TRPV1) modulation, calcium influx, and mitochondrial function were explored through Western blot, CCK-8 assay, JC-1 staining, calcium imaging, adenosine triphosphate (ATP) and antioxidant measurements.
Results: In in vivo experiments, KXA reduced brain infarct volume and neuron loss in t-MCAO mice. Behavioral assessments showed marked improvement in the neurological deficit of t-MCAO mice with KXA treatment (P<0.05 or P<0.01). Additionally, in vitro findings indicated that KX ameliorated OGD/R-induced injury through TRPV1 channel modulation. KX increased cell viability in OGD/R-treated SH-SY5Y cells and prevented OGD/R-induced calcium overload by downregulating TRPV1 expression and constraining calcium influx through TRPV1 (P<0.05 or P<0.01). Furthermore, KXA maintained the membrane potential and function of mitochondria in OGD/R-treated SH-SY5Y cells.
Conclusions: KXA could attenuate ischemic stroke injury through TRPV1 channel modulation, indicating its potential as a promising therapeutic option for stroke in clinical practice.
期刊介绍:
Chinese Journal of Integrative Medicine seeks to promote international communication and exchange on integrative medicine as well as complementary and alternative medicine (CAM) and provide a rapid forum for the dissemination of scientific articles focusing on the latest developments and trends as well as experiences and achievements on integrative medicine or CAM in clinical practice, scientific research, education and healthcare.