Integrated Network Pharmacology and Transcriptomics Analysis to Elucidate the Mechanism of Huoxue Tongluo Qiwei Decoction in the Treatment of Erectile Dysfunction in Spontaneously Hypertensive Rats through Angii-Activated Pkcε Pathway.
Junlong Feng, Sheng Deng, Bin Wang, Cong Zhao, Kali Zou, Haisong Li, Jisheng Wang
{"title":"Integrated Network Pharmacology and Transcriptomics Analysis to Elucidate the Mechanism of Huoxue Tongluo Qiwei Decoction in the Treatment of Erectile Dysfunction in Spontaneously Hypertensive Rats through Angii-Activated Pkcε Pathway.","authors":"Junlong Feng, Sheng Deng, Bin Wang, Cong Zhao, Kali Zou, Haisong Li, Jisheng Wang","doi":"10.2174/0113862073330086241016115236","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.</p><p><strong>Methods: </strong>The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS). Furthermore, transcriptomics analysis was performed via mRNA sequencing to identify significantly differentially expressed proteins. Moreover, the key target proteins of HTQD in the treatment of hypertensive ED were screened by network pharmacology and transcriptomics. In addition, the endothelial cells of the corpus cavernosum were assessed using hematoxylin-eosin staining. The transcript and protein expressions were evaluated via western blotting and Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>The network pharmacology and transcriptome mRNA sequencing revealed that KCNE1 may be the target protein of HTQD in improving hypertensive ED. After HTQD treatment, the systolic and diastolic blood pressure (BP) of hypertensive rats decreased, the number of erections increased, and the pathological structure of the penis was improved. Moreover, HTQD downregulated the protein and mRNA expression of AngII, AT1R, DAG, and PKCε, whereas it upregulated the transcript and protein expression of KCNE1.</p><p><strong>Conclusion: </strong>HTQD may activate the PKCε pathway through AngII, inhibit the expression of KCNE1 protein, relax vascular smooth muscles, and improve erectile function.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073330086241016115236","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.
Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS). Furthermore, transcriptomics analysis was performed via mRNA sequencing to identify significantly differentially expressed proteins. Moreover, the key target proteins of HTQD in the treatment of hypertensive ED were screened by network pharmacology and transcriptomics. In addition, the endothelial cells of the corpus cavernosum were assessed using hematoxylin-eosin staining. The transcript and protein expressions were evaluated via western blotting and Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR).
Results: The network pharmacology and transcriptome mRNA sequencing revealed that KCNE1 may be the target protein of HTQD in improving hypertensive ED. After HTQD treatment, the systolic and diastolic blood pressure (BP) of hypertensive rats decreased, the number of erections increased, and the pathological structure of the penis was improved. Moreover, HTQD downregulated the protein and mRNA expression of AngII, AT1R, DAG, and PKCε, whereas it upregulated the transcript and protein expression of KCNE1.
Conclusion: HTQD may activate the PKCε pathway through AngII, inhibit the expression of KCNE1 protein, relax vascular smooth muscles, and improve erectile function.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.